發新話題
打印

2022亞太數學奧林匹亞競賽初選試題

推到噗浪
推到臉書

2022亞太數學奧林匹亞競賽初選試題

請教非選第二題!謝謝~

附件

2022APMO初選第一階段_考題含第一部分解答.pdf (199.61 KB)

2021-11-15 13:07, 下載次數: 166

TOP

回復 1# newsonica 的帖子

非選第2題
\(\begin{align}
  & \left( 1 \right)b=c \\
& \frac{1}{3}=\frac{a+2b+3c+4d}{3}=\frac{\left( a+b \right)+2\left( c+d \right)+2\left( c+d \right)}{3}=\frac{\left( a+c \right)+2\left( b+d \right)+2\left( b+d \right)}{3}\ge \sqrt[3]{4k} \\
& k\le \frac{1}{108} \\
\end{align}\)
等號成立於\(b=c=\frac{1}{3}-a=\frac{1}{6}-d\)
\(\begin{align}
  & \left( 2 \right)b>c \\
& \frac{1}{3}=\frac{a+2b+3c+4d}{3}>\frac{\left( a+b \right)+2\left( c+d \right)+2\left( c+d \right)}{3}\ge \sqrt[3]{4k} \\
& k<\frac{1}{108} \\
&  \\
& \left( 3 \right)b<c \\
& \frac{1}{3}=\frac{a+2b+3c+4d}{3}>\frac{\left( a+c \right)+2\left( b+d \right)+2\left( b+d \right)}{3}\ge \sqrt[3]{4k} \\
& k<\frac{1}{108} \\
\end{align}\)

TOP

發新話題