發新話題
打印

3題題目請教

推到噗浪
推到臉書

3題題目請教



答案分別是
\(\frac{67}{522}\) , \(\frac{9}{8}\),\(4\)
還請各位幫忙

TOP

回覆第二題

第二題算出來是 5/8,因為欲使4a+b最小,必須讓a,b越小越好

知F(0,1/8)  考慮P=Q=(0,0)  PF距離最短 又經過P從原點出發打到F反射後(對稱軸x=0)

再打到原點 得a=b=1/8  故所求=5/8


Note:  PF距離最短 則P是原點 (令P(a,2a^2) 算出PF距離後 再微分,得a=0時有min)

請板上老師指教

TOP

回覆第三題

第三題  小弟做出來的答案差一個負號,不知道是哪裡少算一個負號

請老師參考

附件

0113計算3.pdf (110.86 KB)

2021-1-13 01:07, 下載次數: 16

TOP

回復 3# anyway13 的帖子

問題出在 \(\frac{1}{\omega^{\frac{n(n-1)}{2}}} \) 這邊

\(\omega^{\frac{n(n-1)}{2}}=cos(n-1)\pi +isin(n-1)\pi \)
當\(n\)為奇數時,整個為1
當\(n\)為偶數時,整個為-1

因此所求極限
\((\frac{-1}{4})^{n-1}(2^n-1)(2^n)(1-(\frac{1}{2})^{n})(\frac{1}{\omega^{\frac{n(n-1)}{2}}}) \to  4 \)

感謝您的解答

[ 本帖最後由 satsuki931000 於 2021-1-13 12:15 編輯 ]

TOP

回復 4# satsuki931000 的帖子

謝謝satsuki931000老師解惑

TOP

回復 1# satsuki931000 的帖子

第 1 題
三球心連線所成三角形之三邊長分別為 13、20、25
三球心到 E_1 的投影點所成三角形之三邊長分別為 2√(4 * 9)、2√(4 * 16)、2√(9 * 16)
則 cos(θ/2) 為後者面積與前者面積之比值

TOP

發新話題