發新話題
打印

一題國中幾何證明

推到噗浪
推到臉書

一題國中幾何證明

如右圖:直線\(AD\)是\(∠BAC\)的平分線,\(I\)在直線\(AD\)上,且\(∠BIC=90^{\circ}+\frac{1}{2}∠BAC\)。
試證:\(I\)是\(\Delta ABC\)的內心。

麻煩各位前輩老師指點 謝謝
得到BAI+ABI+ACI=90度的結論後就走不下去了

TOP

回復 1# satsuki931000 的帖子

用反證法
假設 I 不是內心,O 才是內心
O 是 AD 上異於 I 的一點,角 BOC 必大於或小於角 BIC
與兩者都是 90 度 + (1/2)角 BAC 矛盾
故 I 是內心

[ 本帖最後由 thepiano 於 2020-11-3 22:44 編輯 ]

TOP

回復 2# thepiano 的帖子

謝謝鋼琴老師指點 證出來了

TOP

發新話題