24 123
發新話題
打印

109興大附中

推到噗浪
推到臉書
引用:
原帖由 XINHAN 於 2020-5-5 09:37 發表
分享手寫訂正,有錯誤還多請大家指教~
感謝版上大大分享填充13,16,17,19想法 > < !!
[第10題修正]
求a的最大值應用柯西不等式
p+q+r=3
(p+q+r)(q+r+p)>=(pq+qr+pr)^2=9a^2
0<= a <=1 故最大值取1

TOP

回復 21# XINHAN 的帖子

您的柯西不對吧?

TOP

引用:
原帖由 thepiano 於 2020-5-6 08:40 發表
您的柯西不對吧?
我發現問題了,抱歉抱歉,謝謝鋼琴大大指正

TOP

引用:
原帖由 thepiano 於 2020-5-6 08:40 發表
您的柯西不對吧?
我剛剛趕快修正一下
3a = pq+qr+pr = 1/2 * [(p+q+r)^2 - (p^2+q^2+r^2)] = 1/2 * [9 - (p^2+q^2+r^2)] <= 1/2 * [9 - 3] = 3
a <= 1

註:
(p^2+q^2+r^2)(1^2+1^2+1^2) >= (p+q+r)^2 = 9
p^2+q^2+r^2 >= 3
-(p^2+q^2+r^2) <= -3

[ 本帖最後由 XINHAN 於 2020-5-6 10:31 編輯 ]

TOP

 24 123
發新話題