24 123
發新話題
打印

106師大附中

推到噗浪
推到臉書

回復 20# Chen 的帖子

計算證明第 5 題
(1) 若 AB = AD,則 CD = BC,ABCD 是箏形,易知有內切圓

(2) 若 AB = BC,則 CD = AD,ABCD 是箏形,易知有內切圓

(3) 若 (1) 和 (2) 均不成立
不失一般性,設 AB > AD,則 BC > CD
在 AB 上取 AE = AD,在 BC 上取 CF = CD
則 △ADE、△BEF、△CDF 均為等腰三角形
設 O 為 △DEF 之外心,由全等,易知 O 到 AB、BC、CD、AD 之距離均相等
即 ABCD 有內切圓圓 O

附件

20170520.jpg (24.23 KB)

2017-5-20 22:01

20170520.jpg

TOP

謝謝21樓

您的證明中這裡:「由全等,易知 O 到 AB、BC、CD、AD 之距離均相等」

我可看出 O 到 AB、AD 之距離相等且 O 到 BC、CD 之距離相等。

但是如何看出 O 到 AD、CD 之距離相等呢??

TOP

回復 22# Chen 的帖子

最後用 O 到 AB、BC 之距離相等

TOP

回23樓,我明白了,謝謝 thepiano 老師的說明!

TOP

 24 123
發新話題