發新話題
打印

97中和高中

推到噗浪
推到臉書

97中和高中

請教第2題(感覺要用到tan三倍角?),感謝。

附件

97中和高中.pdf (259.88 KB)

2015-12-25 15:07, 下載次數: 1925

TOP

回復 1# mathca 的帖子

第 2 題
等腰\(\Delta ABC\)中,\(\overline{AB}=\overline{AC}\),\(D\)在\(\overline{BC}\)上、且\(\overline{AD}⊥\overline{BC}\);\(E\)在\(\overline{AD}\)上、且\(\overline{AE}=20\)、\(\overline{ED}=2\),若\(∠BED=3∠BAD\),則\(\overline{AB}=\)   
[解答]
在△BDE 中, \(\displaystyle \overline{BE}=\frac{2}{\cos 3x}\)
在△ABE 中,由正弦定理,\(\displaystyle \overline{BE}=\frac{10}{\cos x}\)
依此可解出\(\displaystyle \cos x=\frac{2}{\sqrt{5}}\)
在△ABD 中,\(\displaystyle \overline{AB}=\frac{22}{\cos x}=11\sqrt{5}\)

TOP

回復 2# thepiano 的帖子

請教一下97中和
填6
答案為何是8

TOP

回復 3# nanpolend 的帖子

填 6.
設\([x]\)為表示小於或等於\(x\)的最大整數,令\(\displaystyle b_n=\Bigg[\;\frac{n}{1} \Bigg]\;+\Bigg[\;\frac{n}{2} \Bigg]\;+\Bigg[\;\frac{n}{3} \Bigg]\;+\ldots+\Bigg[\;\frac{n}{n} \Bigg]\;\),則\(b_{2008}-b_{2007}=\)   
[解答]
若 \( x,k\in\mathbb{N} \) 且 \( k\mid x \)

則 \( x-k\leq x-1<x \Rightarrow\frac{x}{k}-1\leq\frac{x-1}{k}<\frac{x}{k} \Rightarrow[\frac{x-1}{k}]=[\frac{x}{k}]-1 \)。

若 \( x,k\in\mathbb{N} \) 且 \( k\not \mid x \),則可以得到 \( [\frac{x-1}{k}]=[\frac{x}{k}] \)

而 \( 2008 = 2^3 \times 251\),故 2008 共有 8 個正因數。

\( b_{2008} - b_{2007} \) 的式子中,把分母相同的兩項依以上規則計算可得 \( b_{2008} - b_{2007} = 8\)
文不成,武不就

TOP

回復 1# mathca 的帖子

請教計算證明題2.
黎曼和湊不出來

TOP

回復 5# nanpolend 的帖子

計算證明2

TOP

回復 6# Lopez 的帖子

感謝回復

TOP

發新話題