發新話題
打印

100師大附中

推到噗浪
推到臉書

回復 36# bugmens 的帖子

費馬點這觀念,的確是不好想,這個解題技巧真的很讚,謝謝bugmens老師貼出來的證明。有幾個疑問希望幫忙解惑。為何一個內角大於120度,所求的點不存在。最小值是發生在F跟A,B,C三點的夾角都是120度的時候,這結論怎麼證明。我算師大附中100年,計算題第三題。直接套用此三角度是120度,才可以算出結果。120度是要當結論背起來,直接套用至計算中嗎。。。

TOP

回復 51# shingjay176 的帖子

我來自問自答,在google搜索【費馬點】,我已經疑惑解除了。
http://zh.wikipedia.org/zh-hant/%E8%B2%BB%E9%A6%AC%E9%BB%9E
至於為何三角形內任一角大於120度,就找不到。。。。

[ 本帖最後由 shingjay176 於 2012-4-20 04:33 PM 編輯 ]

TOP

回復 52# shingjay176 的帖子

不失一般性,設 \(\triangle ABC\) 中,\(\angle BAC\geq 120^\circ\),

\(E\) 為 \(\triangle ABC\) 內部異於 \(A\) 之點,

如下圖,可做 \(\triangle ABD, \triangle AEF\) 為正三角形,



可知 \(\triangle ABE\sim \triangle ADF\),

因此 \(\overline{EA}+\overline{EB}+\overline{EC}=\overline{DF}+\overline{FE}+\overline{EC}\)

連接 \(\overline{DE}, \overline{DC}\)



可知 \(\overline{DF}+\overline{FE}+\overline{EC}\geq \overline{DE}+\overline{EC}\)

因為 \(\angle DAB+\angle BAC\geq 60^\circ+120^\circ=180^\circ\)

所以 \(A,E\) 皆在直線 \(CD\) 的同側,且 \(A\) 為 \(\triangle CDE\) 內部之點,

可知 \(\overline{DE}+\overline{EC}\geq\overline{DA}+\overline{AC}\)

故,

\(\triangle ABC\mbox{內部一點} E \mbox{到} A,B,C \mbox{三點頂的距離}=\overline{EA}+\overline{EB}+\overline{EC}\)

  \(=\overline{DF}+\overline{FE}+\overline{EC}\)

  \(\geq \overline{DE}+\overline{EC}\)

  \(\geq\overline{DA}+\overline{AC}\)

  \(\geq\overline{BA}+\overline{AC}\)

  \(=E \mbox{到} A,B,C \mbox{三點頂的距離}\)

TOP

引用:
原帖由 weiye 於 2011-5-14 11:52 AM 發表
先解出 P 點坐標 \(\displaystyle (\sqrt{\frac{1}{1-a}}, \frac{a}{1-a})\),

然後求出 \(OP\) 直線方程式為 \(\displaystyle y=\frac{a}{\sqrt{1-a}}x\),

再來算出體積為  ...
我先使用同瑋岳老師的方法,並設u=1-a,結果是一樣的,當a=-4時有極值
但改用薄殼法來求,因為次方不同,微分後求極值點卻得到a= -1,T=pi/24,同寸絲老師,
這也是我的疑問所在,比較後,反而是法一的值較小

TOP

回復 54# wooden 的帖子

看了一下之前的算式,應該是轉錯軸,不小心看成轉 \(y\) 軸了

所以,weiye 老師的解是對的,感謝又幫我找到一個錯誤
文不成,武不就

TOP

回復 39# weiye 的帖子

計算 2. 延續  weiye 老師的體積結果 \( V = \displaystyle \frac{2\pi a^{2}}{15(1-a)^{\frac52}} \)

令 \( a = -\tan^2 \theta \),則 \( V = \frac{2\pi}{15}\sin^4\theta\cos\theta \)

由算幾不等式有 \( 1=\frac{\sin^{2}\theta}{4}+\frac{\sin^{2}\theta}{4}+\frac{\sin^{2}\theta}{4}+\frac{\sin^{2}\theta}{4}+\cos^{2}\theta\geq5\sqrt[5]{\frac{\sin^{8}\theta\cos^2\theta}{256}} \),
(感謝眼尖的 wooden 挑出筆誤,已修正上行)

且當 \( \tan^{2}\theta=4 \) 時,等式成立,故 \( a=-4 \) 時有最大值 \( \frac{32\pi}{375\sqrt{5}} \)。

[ 本帖最後由 tsusy 於 2014-5-7 12:10 AM 編輯 ]
文不成,武不就

TOP

回復 56# tsusy 的帖子

寸絲兄
根號內的cos是平方喔!

TOP

請問計算四

版上老師好,請問計算四的證明逆敘述要怎麼證阿

若n是質數,則(n-1)!除以n的餘數是n-1

TOP

回復 58# anyway13 的帖子

Wilson’s Theorem

TOP

回復 59# thepiano 的帖子

謝謝鋼琴老師指點!

TOP

發新話題