題目:設 \(f(x)\) 為連續函數,且 \(\displaystyle \int\limits_a^x {f\left( t \right)dt} = {x^2} + 2x - 3\) (\(a\) 為常數),則 \(a\) 的所有可能值的和為何?
解答:
\(x=a\) 帶入題目所給之式子,可得
\(\displaystyle \int\limits_a^a {f\left( t \right)dt} = {a^2} + 2a - 3\)
\(\displaystyle \Rightarrow a^2 + 2a - 3=0\)
\(\Rightarrow \left( {a + 3} \right)\left( {a - 1} \right) = 0\)
\(\displaystyle \Rightarrow a=-3 \mbox{ 或 } a=1.\)
故,\(a\) 的所有可能值的和\(=\left(-3\right)+1=-2.\)