設 \(a_1, a_2, a_3, \cdots, a_{10}\) 此 10 個數形成等比數列,它們的和為 \(S=a_1+a_2+a_3+\cdots+a_{10}\),它們的倒數和為 \(R=\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}++\frac{1}{a_{10}}\),且它們的乘積為 \(P=a_1\cdot a_2\cdot a_3 \cdots a_{10}\)。若已知 \(\frac{S}{R}=2\),則 \(P\) 的值為_________。
解題利用:
設此等比數列的首項為 \(a\),公比為 \(r\),項數為 \(n\),則
由等比級數和的公式列出 \(S, R\) 且將 \(P\) 也以 \(a,r,n\) 表示之後,可以發現如下的關係式
\[\left(\frac{S}{R}\right)^n =P^2.\]