Math Pro 數學補給站» 高中的數學 » I:數與函數 » 多項式方程式,解 (x+1)(x^2+1)(x^3+1)=30 * x^3
瑋岳
題目:求解 (x+1)(x二次方+1)(x三次方+1)=30*x三次方
作者:chpohoa1 顯然x=0不為其解 兩邊同除以x^3 => [√x + 1/√x] * [x + 1/x] * [√(x^3) + 1/(√x^3)] = 30 令 √x + 1/√x = t x + 1/x = t^2 - 2 √(x^3) + 1/(√x^3) = t^3 - 3t => t^2 * ( t^2 - 2 ) * (t^2-3) = 30 令 t^2 = u => (u^2 + 6)(u-5) = 0 =>x + 1/x = t^2 - 2 = -2 ± √6i ,3 => x^2 + ( 2∓√6i) x + 1 = 0 , x^2 - 3x + 1 = 0
多喝水。
查看詳細資料
TOP
查看個人網站