三角函數,倍角公式,證明 tanx+tan(x/2)=cscx-2cot(2x)
倍角公式與半角公式例題,
試證: tan(x) + tan(x/2) = csc(x) - 2cot(2x)
證明:
tan(x) + tan(x/2)= sin(x)/cos(x) + {1-cos(x)} / sin(x)
={sin^2 (x) + cos(x) - cos^2 (x)} /{sin(x) cos(x)}
={(1 - cos^2 (x)) + cos(x) - cos^2 (x)} /{sin(x) cos(x)}
={cos(x) + 1 - 2 cos^2(x)} /{sin(x) cos(x)}
={cos(x) - cos(2x)} /{sin(x) cos(x)}
= 1/sin(x) - cos(2x)/{sin(x) cos(x)}
= csc(x) - 2 cos(2x)/{2 sin(x) cos(x)}
= csc(x) - 2 cos(2x)/sin(2x)
= csc(x) - 2cot(2x)
證畢.