請教第2題填充
版上老師好
想請問填充二,怎樣都算不出\(\displaystyle \frac{1}{\sqrt{3}}\)
\(z_{n+1}=z_n+\sqrt{3}z_n-\sqrt{3}i\)
\(z_{n+1}-z_n=\sqrt{3}z_n-\sqrt{3}i=\sqrt{3}(z_n-i)\)
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{|\;z_{n+1}-z_n|\;}=\frac{1}{\sqrt{3}}\left[\frac{1}{|\;z_1-i |\;}+\frac{1}{|\;z_2-i |\;}+\frac{1}{|\;z_3-i |\;}+\dots +\frac{1}{|\;z_n-i |\;}+ \right]\)
\(\displaystyle =\frac{1}{\sqrt{3}}\left[\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{30}+\sqrt{10}}+\frac{1}{2(\sqrt{40}+\sqrt{30})}+\ldots \right]\)
\(\displaystyle =\frac{1}{\sqrt{3}}\left[\frac{1}{\sqrt{10}}+(\frac{\sqrt{30}}{20}-\frac{\sqrt{10}}{20})+(\frac{\sqrt{40}}{20}-\frac{\sqrt{30}}{20})+\ldots \right]\)
\(\displaystyle =\frac{1}{\sqrt{3}}\left(\frac{\sqrt{10}}{20} \right)=\frac{\sqrt{30}}{60}\)