回復 25# beaglewu 的帖子
12,
坐標平面上,圓\(C\):\((x-7)^2+(y+4)^2=5\),且\(A\)點坐標為\((5,2)\)。設\(P\)為\(y\)軸上的動點,\(Q\)為圓\(C\)上的動點,則\(\overline{PA}+\overline{PQ}\)的最小值為 。
13,
在同一平面上,有兩個三角形\(\Delta ABC\)和\(\Delta PQR\),若\(\vec{PA}+2\vec{PB}+3\vec{PC}=\vec{CA}\),\(\vec{QA}+2\vec{QB}+3\vec{QC}=2\vec{AB}\),\(\vec{RA}+2\vec{RB}+3\vec{RC}=3\vec{BC}\),則\(\displaystyle \frac{\Delta ABC面積}{\Delta PQR面積}=\) 。
16,
若\(\displaystyle f(x)=x^4-2x^3+3x-(\int_2^x (3t^3-7t^2+5t-1)dt)-6\),則\(\displaystyle \lim_{h\to 0}\frac{f(2+3h)}{4h}=\) 。
20.
設\(A(-5,2)\)、\(B(4,14)\),\(P\)為動點,若\(\Delta ABP\)之周長為54,則\(\Delta ABP\)面積之最大值為 平方單位。
附件
-
106文華代理#12.png
(42.59 KB)
-
2019-6-26 14:43
-
106文華代理#13.png
(93.91 KB)
-
2019-6-26 14:43
-
106文華代理#16.png
(43.9 KB)
-
2019-6-26 14:43
-
106文華代理#20.png
(56.86 KB)
-
2019-6-26 14:43