題目:\(\triangle ABC\) 中, \(\angle A=45^\circ\),\(\tan\angle ABC=2\),\(H\) 為 \(\triangle ABC\) 的垂心,求 \(\triangle BHC:\triangle AHB:\triangle AHC =\) ?
提示:
\(\triangle BHC:\triangle AHB:\triangle AHC = \tan A: \tan C: \tan B\) [記得證明一下當練習題]
\(\displaystyle \tan A = \tan 45^\circ = 1\)
\(\displaystyle \tan B=2\)
\(\displaystyle \tan C = \tan\left(\pi-\left(A+B\right)\right)=-\tan\left(A+B\right)=-\frac{\tan A+\tan B}{1-\tan A\tan B}\)