回復 1# whzzthr 的帖子
都花大錢買書了,不要忘記找作者售後服務
小弟的做法如下:
設\({{z}_{1}},{{z}_{2}},{{z}_{3}}\)在複數平面上所表示的點分別是\(P,Q,R\)
\(\begin{align}
& {{z}_{2}}^{2}-2{{z}_{1}}{{z}_{2}}+4{{z}_{1}}^{2}=0 \\
& {{\left( {{z}_{1}}-{{z}_{2}} \right)}^{2}}=-3{{z}_{1}}^{2} \\
& \left| {{z}_{1}}-{{z}_{2}} \right|=\sqrt{3}\left| {{z}_{1}} \right| \\
& \\
& {{\left( \frac{{{z}_{2}}}{{{z}_{1}}} \right)}^{2}}-2\left( \frac{{{z}_{2}}}{{{z}_{1}}} \right)+4=0 \\
& \frac{{{z}_{2}}}{{{z}_{1}}}=1\pm \sqrt{3}i \\
& \left| \frac{{{z}_{2}}}{{{z}_{1}}} \right|=2 \\
& \left| {{z}_{2}} \right|=2\left| {{z}_{1}} \right| \\
\end{align}\)
\(\Delta OPQ\)是直角三角形,其中\(\angle OPQ={{90}^{{}^\circ }},\angle OQP={{30}^{{}^\circ }}\)
同理
\(\begin{align}
& {{z}_{3}}^{2}-2{{z}_{2}}{{z}_{3}}+2{{z}_{2}}^{2}=0 \\
& \left| {{z}_{2}}-{{z}_{3}} \right|=\left| {{z}_{2}} \right| \\
& \left| {{z}_{3}} \right|=\sqrt{2}\left| {{z}_{2}} \right| \\
\end{align}\)
\(\Delta OQR\)是等腰直角三角形,其中\(\angle OQR={{90}^{{}^\circ }}\)
\(\overline{PQ}=\left| {{z}_{1}}-{{z}_{2}} \right|=2\sqrt{3},\overline{QR}=\overline{OQ}=\left| {{z}_{2}} \right|=4\)
畫圖可知
\(\Delta PQR=\frac{1}{2}\times 2\sqrt{3}\times 4\times \sin {{120}^{{}^\circ }}\ or\ \frac{1}{2}\times 2\sqrt{3}\times 4\times \sin {{60}^{{}^\circ }}=6\)