96玉里高中的一題
若\( x,y,z \in R \),\( y+z=1 \)且\( x^2+y^2+z^2=1 \)則x的範圍為何?
正確的解法:
易知\( y^2+z^2+2yz=1 \)所以\( 2yz=x^2 \)
\( 2y(1-y)=x^2 \)再利用判別式,\( \displaystyle -\frac{\sqrt{2}}{2} \le x \le \frac{\sqrt{2}}{2} \)
如果今天學生使用柯西不等式
\( (x^2+y^2+z^2)(1^2+1^2+1^2)\ge (x+y+z)^2=(x+1)^2 \)
找出來的範圍明顯與答案不同,該如何向學生解釋?
做到這題的時候,突然想利用柯西不等式做做看
可是答案明顯不符,如果今天學生問起相關問題
要如何解釋柯西不等式算出來不夠清確的情況?
謝謝各位老師!