回復 17# weiye 的帖子
填充第 2 題另解,
\(\displaystyle\sum_{m=1}^{n-1}\sum_{k=1}^m k\left(k+1\right) = 2 \sum_{m=1}^{n-1}\sum_{k=1}^m\frac{k\left(k+1\right)}{2}=2 \sum_{m=1}^{n-1}\sum_{k=1}^m\sum_{i=1}^k i = 2 \sum_{m=1}^{n-1}\sum_{k=1}^m\sum_{i=1}^k \sum_{p=1}^i 1\)
\(\displaystyle= 2\times\)(對於固定正整數 \(n\),計算滿足條件 \(1\leq p\leq i\leq k\leq m\leq n-1\) 的有序數組 \((p,i,k,m)\) 整數解之組數)
\(\displaystyle= 2H^{n-1}_4= 2 C^{n+2}_4 = \frac{\left(n+2\right)\left(n+1\right)n\left(n-1\right)}{12}\)