發新話題
打印

101台中二中二招

想請教計算4,5題

TOP

計算5
如圖,平面上三角形\(ABC\),已知\(D,E\)分別在線段\(\overline{AB},\overline{BC}\)上,且\( \overline{AD}:\overline{BD}=4:5 \),\( \overline{BE}:\overline{EC}=3:2 \),\(\overline{AE}\)和\(\overline{CD}\)交於點\(O\),若點\(O\)為三角形\(ABC\)之外心,試求\(\overline{AB}^2:\overline{BC}^2:\overline{AC}^2\)

我的方法有點麻煩...參考看看....有錯請訂正...
應該會有比較快的方法吧...

附件

5.jpg (67.61 KB)

2012-7-16 20:26

5.jpg

TOP

想請教計算第4題 謝謝

TOP

第4題
有五筆二維數據\((0,4),(1,2),(-2,-2),(5,0)\)及\((x,y)\),若點\((x,y)\)為直線\(L\):\(y=mx-2\)上一點,且滿足此五筆數據的相關係數為0,試求\(m\)的範圍。

只想得到這原始方法...不知道對不對...參考看看就好

附件

4.jpg (73.18 KB)

2012-7-19 07:49

4.jpg

TOP

回復 14# andyhsiao 的帖子

計算 4. 用不平移的應該會稍微好算一點

也就是 0 = Cov(X,Y) = E[XY] - E[X]E[Y]
網頁方程式編輯 imatheq

TOP

填充8.
平面上,\(\Delta ABC\)中\(D、E\)依序為線段\(\overline{AB}\)與\(\overline{AC}\)上一點,\(F\)為線段\(\overline{DE}\)上一點,且\( \displaystyle \frac{\overline{AD}}{\overline{AB}}=x \),\( \displaystyle \frac{\overline{AE}}{\overline{AC}}=y \),\( \displaystyle \frac{\overline{DF}}{\overline{DE}}=z \),滿足\(\displaystyle 2y+z-x=\frac{4}{5}\),若\( \Delta BDF \)面積為\( \Delta ABC \)面積的\(a\)倍,則\(a\)的最大值為   

想請問各位先進
填充八該如何做
我令三角形面積=1,BCF面積=a
用比例慢慢求關係式(a/z)x(1/1-x)ABx(1/1-y)AC=ABC面積
然後...我就...做不出來...
想請教大家...該如何做
謝謝!

TOP

回復 16# jmfeng2001 的帖子

填充第 8 題:

\(\triangle BDF \mbox{面積}=z \triangle BDE \mbox{面積}\)

        \(=z\cdot (1-x) \triangle ABE \mbox{面積}\)

        \(=z(1-x)\cdot y \triangle ABC \mbox{面積}\)

所以 \(a=(1-x)yz\),

由題述 \(\displaystyle 2y+z-x=\frac{4}{5}\Leftrightarrow 2y+z+(1-x)=\frac{9}{5}\),

因為 \(2y, z, (1-x)\) 皆非負,由算幾不等式,

可得 \(\displaystyle \frac{2y+z+(1-x)}{3}\geq \sqrt[3]{2y\cdot z\cdot (1-x)}\)

    \(\displaystyle \Leftrightarrow \frac{3}{5}\geq\sqrt[3]{2a}\Leftrightarrow \frac{27}{250}\geq a\)

可知,\(a\) 之最大值為 \(\displaystyle \frac{27}{250}\),

且此時,\(\displaystyle 2y=z=1-x=\frac{3}{5}\Leftrightarrow x=\frac{2}{5},y=\frac{3}{10},z=\frac{3}{5}\)

多喝水。

TOP

謝謝瑋岳老師,原來我搞錯了...難怪一直算不出來
謝謝

TOP

引用:
原帖由 tsusy 於 2012-7-15 05:15 PM 發表
填充 4. x 代表非 a,所求即 \(\displaystyle \frac{xaxa}{xaxa+xxxa} \)

\( P = \frac{4\cdot1\cdot4\cdot1}{4\cdot1\cdot4\cdot1+4\cdot3\cdot3\cdot 1} = \frac{4}{13}\)
填充 9.

\( f'(x)=3x^{2}-2ax+a^{2}-1 \) ...
請問為什麼還要多討論(3)呢?
(3) 令 \( y=x-1 \),則 \( y \) 之兩根 \( \alpha' < \beta' \leq 0 \)

TOP

引用:
原帖由 shiauy 於 2012-7-5 10:58 PM 發表

我把兩條公切線算出來時間就到了說@@
令切線斜率m,分別切兩圖形於\(({x_1},{y_1})({x_2},{y_2})\)
則有\(m = \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = 2{x_1} =  - 2{x_2} + 2\)
\({x_1} =  - {x_2} + 1\)代入 ...
為何面積部份只要算上部分的面積再乘以2就好了呢?
請問要怎麼看呢?

TOP

發新話題