回復 15# larson 的帖子
第19題
\( \Delta ABC \)中,\( A(4,0,0) \),\( B(0,4,0) \),\( C(0,0,4) \),\( M \)為\( \overline{BC} \)中點,今將\( C \)點沿\( \overline{AM} \)對折至\( C' \)點使\( \overline{BC'}=2\sqrt{2} \),則\( C' \)點坐標為?
可知\(M(0,2,2)\),且\(\overrightarrow{MA}=2(2,-1,-1) \),
令\(C'(a,b,c)\)
依題意可知
(1)\(\overrightarrow{MA}\perp \overrightarrow{MC'}\Rightarrow (a-0,b-2,c-2)\cdot (2,-1,-1)=0\Rightarrow 2a-b-c=-4 \)
(2)\(\overline{BC'}=2\sqrt{2}\Rightarrow (a-0)^2+(b-4)^2+(c-0)^2=8\Rightarrow a^2+b^2+c^2-8b=-8\)
(3)\(\overline{MC'}=2\sqrt{2}\Rightarrow (a-0)^2+(b-2)^2+(c-2)^2=8\Rightarrow a^2+b^2+c^2-4b-4c=0\)
(3)-(2),化簡得 \(b=2+c\)
再代入(1),化簡得 \(c=1+a\Rightarrow b=3+a\)
最後全代入(2),計算得\(a=\pm \sqrt{2}\)
所以\(C'(\sqrt{2},3+\sqrt{2},1+\sqrt{2})\) 或\(C'(-\sqrt{2},3-\sqrt{2},1-\sqrt{2})\)
[ 本帖最後由 katama5667 於 2012-7-2 06:03 PM 編輯 ]