證明第2
1.\(n = 1,{E_1} = \{ 1,2\} \),恰有唯一元素為\({2^1}\)的倍數
2.若\(n = k\),\({E_k}\)恰有一元素為\({2^k}\)的倍數
令此元素為A,\(A = {2^k}B\),B是正整數
3.當\(n = k+1\),\({E_{k + 1}} = (1){E_k} \cup (2){E_k}\)
其中\((1){E_k}\)表示將\({E_k}\)所有元素添加數字1在首位
其中\((2){E_k}\)表示將\({E_k}\)所有元素添加數字2在首位
則(1)A與(2)A表示將A分別加入數字1,2在首位
故
\((1)A = A + {10^k} = {2^k}B + {10^k} = {2^k}(B + {5^k})\)
\((2)A = A + 2 \times {10^k} = {2^k}B + 2 \times {10^k} = {2^k}(B + 2 \times {5^k})\)
因\((B + {5^k})\)與\((B + 2 \times {5^k})\)恰有一為偶數
\((1)A\)與\((2)A\)恰有一為\({2^{k + 1}}\)的倍數
若\({E_{k + 1}}\)有兩數x,y皆為\({2^{k + 1}}\)的倍數
則x,y亦為\({2^{k}}\)的倍數,代表後k位數為\({2^{k}}\)的倍數
(\({2^{k}}\)倍數的判別法:末k位為\({2^{k}}\)的倍數)
那麼x,y必為\((1)A\)或\((2)A\),由上面可知x=y
由數學歸納法得證
[ 本帖最後由 shiauy 於 2012-6-29 10:02 PM 編輯 ]