2.
空間坐標系上,則橢圓\( \cases{x^2+y^2=4 \cr x+y+z=0} \)的兩焦點坐標為
weiye解題,
https://math.pro/db/thread-578-1-1.html
3.
設\( m,n \in N \),將n個球隨機全部投入m個不同的袋子裡,則空袋子個數的數學期望值為?
https://math.pro/db/thread-690-1-1.html
8.
a,b,c為非零實數,\( a^5+b^5+c^5=a^3+b^3+c^3 \),\( a+b+c=0 \),則\( a^2+b^2+c^2= \)?
[解答]
令\( f(x)=x^3+px+q \),\( f'(x)=3x^2+p \),計算\( \displaystyle \frac{f'(x)}{f(x)} \)
\( \matrix{
3 & 0 & p & & & & & \cr
& 0 & 0 & 0 & 0 & 0 & & \cr
& & -3p& 0 & 2p^2 & 3pq & -2p^3 & \cr
& & &-3q& 0 & 2pq & 3q^2 &-2p^2q \cr
-& -& -& -& -& -& -& -\cr
3 & 0 & -2p& -3q&2p^2&5pq&...&...} \Bigg\vert\;
\matrix{0 \cr -p \cr -q \cr \cr } \)
\( a^2+b^2+c^2=-2p \),\( a^3+b^3+c^3=-3q \),\( a^5+b^5+c^5=5pq \)
\( \displaystyle a^2+b^2+c^2=\frac{6}{5} \)
3個實數x,y,z,滿足下列三個等式
\( \displaystyle \cases{x+y+z=0 \cr x^3+y^3+z^3=3 \cr x^5+y^5+z^5=15} \)
試求\( x^2+y^2+z^2 \)的值?
(建中通訊解題第70期)
計算證明題
1.
如圖\( \overline{AB}=\overline{CD}=1 \),\( ∠BDC=90^o \),\( ∠ADB=30^o \),求\( \overline{BC}= \)?
設P為△ABC的\( \overline{BC} \)邊上一點,且\( \overline{PB}=\overline{AC}=a \),若\( \displaystyle ∠BAP=\frac{1}{3}∠PAC=30^o \),則\( \overline{PC} \)?
(95中一中)
如下圖,\( ∠AOB=90^o \),\( ∠BOC=30^o \),且\( \overline{AO}=\overline{BC}=1 \),則\( \overline{AB} \)長度為
(91高中數學能力競賽中彰投區試題,h ttp://www.math.nuk.edu.tw/senpe ... igh_Taichung_02.pdf 連結已失效
102.1.23補充
已知\( ∠ABC=90^o \),\( ∠ABD=45^o \),\( \overline{BC} \)長為\( 3\sqrt{10} \)且\( \overline{AD} \)長為5,試求\( \overline{AD} \)之長。
(99臺灣大學數學系學士班甄選入學 第二階段筆試試題(一),h ttp://www.math.ntu.edu.tw/prospective/recruit.php?Sn=32 連結已失效
2.
設函數\( f(x) \)為一可微分函數,P為\( y=f(x) \)圖形上距離原點O最近的一點,若\( y=f(x) \)之圖形不過原點,試證明直線\( \overline{OP} \)為\( y=f(x) \)之圖形上過P點之法線
設函數\( f(x) \)為一可微分函數,P為\( y=f(x) \)圖形上距離原點O最近的一點。
(1)若P點的坐標為\( (\alpha,f(\alpha)) \),試證\( \alpha+f(\alpha)f'(\alpha)=0 \)。
(2)若\( y=f(x) \)之圖形不過原點,試利用第(1)小題之結果,證明直線\( \overline{OP} \)為\( y=f(x) \)之圖形上過P點之法線。
(85大學聯考自然組,h ttp://web.tcfsh.tc.edu.tw/jflai/ma/M1996A.swf 連結已失效
書名:"數學是什麼?"
http://i.imgur.com/DFoe5.jpg