發新話題
打印

101 宜蘭高中

回復 6# weiye 的帖子

請教瑋岳老師,我用你的方法算出來a=8,b=8,怪怪的,不知我是否算錯?

TOP

回復 2# Ellipse 的帖子

超棒的方法,受教了,感恩

TOP

回復 11# brace 的帖子

我這方法不好,且有 bug,已刪!:P

而且原本附圖也打錯邊長!

修正後圖案如下~




紅色線段長=\(\sqrt{\left(\left(6-a\right)+a+4\right)^2+\left(2+b+(3-b)\right)^2}=5\sqrt{5}\)

得所求的下界為 \(5\sqrt{5}\)

且當 \(\displaystyle\frac{6-a}{2}=\frac{a}{b}=\frac{4}{3-b}\) 時,下界即為最小值。

而我說的 bug ,就是指~我在解讀題目時,不知不覺自己多加上了 \(0<a<6\) 與 \(0<b<3\) ,但這是題目所沒有說的!

所以,我這樣解是不行的!還是老王老師的方法好!

真要修正的話,應該如下圖~




利用 \(|6-a|+|a|+4\geq|(6-a)+a|+4=10\) 且 \(2+|b|+|3-b|\geq2+|b+(3-b)|=5\)

所以當兩股有最小值時,\(0\leq a\leq 6\) 與 \(0\leq b\leq 3\),

然後再用畢氏定理,找出紅線的下界,

然後再求當三小段斜邊的斜率相同的 \(a\) 與 \(b\) 值,即可得下界即為最小值。

多喝水。

TOP

引用:
原帖由 Ellipse 於 2012-6-8 05:31 PM 發表


假設P在雙曲線左葉,F'(0,4) ,F(10,0) ,
K為F' 以x+y=8為對稱軸的對稱點,則K(4,8)
依光學性質與雙曲線定義可知
PF-PF' =PF-PK=KF=10=2a ,a=5
2c=FF'=2*29^0.5 ,c=29^0.5
b^2=c^2-a^2=29-25=4 ,b=2
所求=2b^2/a=8/5 ...
請問第四行的PF-PK=KF
是為何?一直理不出頭緒
謝謝

TOP

引用:
原帖由 brace 於 2012-6-8 09:44 PM 發表
我算H(5,12-1)-C(4,1)*H(5,12-1-10)-1*H(5,12-10)
=C(15,11)-4*C(5,1)-C(6,2)
=1365-20-15
=1330
我算H(5,12-1)-C(4,1)*H(5,12-1-10)-1*H(5,12-10)
                                                        ^^^^^^^^^^^^^^^^^^

可以解釋後面的意思嗎?

TOP

回復 15# mandy 的帖子

原式=全部的-不合的
        =全部的-(個,十,百,千位數字大於或等於十的情況)-再扣掉萬位數字大於或等於十的情況

TOP

回復 13# weiye 的帖子

了解了,謝謝你^^

TOP

引用:
原帖由 march2001kimo 於 2012-6-10 12:28 AM 發表


請問第四行的PF-PK=KF
是為何?一直理不出頭緒
謝謝
K會在PF上

TOP

我想問一下這一題 應該沒有記錯題目
\( \forall x \in R \),\( \displaystyle f(x)=\frac{a^x}{a^x+\sqrt{a}} \),則\( \displaystyle \sum_{i=1}^{1000}f \left( \frac{i}{1001} \right)= \)?

TOP

引用:
原帖由 meifang 於 2012-6-11 12:10 PM 發表
我想問一下這一題 應該沒有記錯題目
頭尾配:
f(1)+f(1000)=1
f(2)+f(999)=1
....

TOP

發新話題