回復 6# hua0127 的帖子
單選 5.
若\(\displaystyle \lim_{n\to \infty}\frac{(1^2+2^2+\ldots+n^2)(1^5+2^5+\ldots+n^5)}{(1^3+2^3+\ldots+n^3)(1^4+2^4+\ldots+n^4)}=\frac{b}{a}\)(\(a,b\)為整數,且\(\displaystyle \frac{b}{a}\)為一最簡分數),則\(a+b=\)?
(A)37 (B)29 (C)22 (D)19。
[解答]
很標準的做法,如果是小弟在考場裡的話,看到選擇題就會偷懶
\(\displaystyle \frac{\frac13\cdot\frac16}{\frac14\cdot\frac15}=\frac{20}{18}=\frac{10}{9} \)
然後就填答案了,至於為什麼可以偷懶,有空的人自己想想吧
慢了一步...還被揭底了
設\(\overline{AD}\)為直角\(\Delta ABC\)之斜邊上的高,過\(D\)分別作\(\overline{DE}⊥\overline{AB}\),\(\overline{DF}⊥\overline{AC}\),令\(\overline{BC}=a\),\(\overline{BE}=x\),\(\overline{CF}=y\),求證\(\displaystyle x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}\)。
[解答]
好吧,只好來做 計算 2. 來個暴力另解
坐標化. \( A(0,0),\, B(c,0),\, C(0,b) \) ,則 \(\displaystyle D(\frac{b^2c}{a^2},\frac{bc^2}{a^2}) \)
所以 \(\displaystyle x = \frac{c^3}{a^2},\, y = \frac{b^3}{a^2} \Rightarrow x^{\frac23}+y^{\frac23} = a^{\frac23} \)