填充2
與(5,0),(-5,0)成直角的點在以這兩點為直徑的圓上,
內部的點就與這兩點成鈍角
計算1
\(\displaystyle \Sigma_{k=1}^9 (-1)^k \cos \frac{k\pi}{19}=\Sigma_{k=1}^9 \cos \frac{2k\pi}{19} \)
而\(\displaystyle \Sigma_{k=1}^{19} \cos \frac{2k\pi}{19}=0 \)......(*)
且\(\displaystyle \cos \frac{2k\pi}{19}=\cos \frac{(38-2k)\pi}{19} \)
所以從(*)式可以變成
\(\displaystyle 1+2\Sigma_{k=1}^9 \cos \frac{2k\pi}{19}=0 \)
故\(\displaystyle \Sigma_{k=1}^9 (-1)^k \cos \frac{k\pi}{19}=-\frac{1}{2} \)