引用:
原帖由 enlighten0626 於 2023-5-3 20:55 發表
請教2,6(有除了窮舉以外的方法嗎),10
若擲四顆相同的公正骰子,當四顆點數乘積為完全平方數時停止,否則再擲一次,請問投擲次數的期望值為
。
[解答]
骰子的點數1~6,不外乎質因數為2,3,5
x代表因數2,y代表因數3,z代表因數5
所以計算\(f(x,y,z)=(1+x+y+x^2+z+xy)^4\)展開後,指數都偶數的系數和即可。
先把\(y\)奇數次方的去除,\(\displaystyle \frac{f(x,1,z)+f(x,-1,z)}2=\frac{(2+2x+x^2+z)^4+(x^2+z)^4}2\equiv g(x,z)\)
再把\(x\)奇數次方的去除,\(\displaystyle \frac{g(1,z)+g(-1,z)}2=\frac{((5+z)^4+(1+z)^4)+((1+z)^4+(1+z)^4)}4=\frac{(5+z)^4+3(1+z)^4}4\)
最後再把\(z\)奇數次方去除,得\(\displaystyle \frac{6^4+3\times2^4+4^4}8=200\)
投一次積為平方數機率為\(\displaystyle p=\frac{200}{6^4}\),幾何分配期望值為\(\displaystyle \frac1p=\frac{6^4}{200}\)
註:
從上面的論述,丟\(n\)骰子,積是平方數的方法數是\(\displaystyle \frac{6^n+3\times2^n+4^n}8\)。
同方法也可以算8面體骰、12面體骰……
代\(1, \omega\)與\(\omega^2\)可以算積是立方數的機率。
代\(1, i, i^2, i^3\)可以算積是四次方數的機率。
代primitive \(n\)th roots of unity的次方,就可以算積是\(n\)次方數的機率。