引用:
原帖由 leilei 於 2022-5-8 12:46 發表
版上的老師們好,想問填充的6、7題
謝謝解惑!
第6題,可以看成成宇集\(U=\{1,2,3,4\}\),而\(A,B,C⊆U\),且兩兩交集非空。
於是將\(A,B,C\)與\(U\)彼此的關係畫成文氏圖,即可看成將\(1,2,3,4\)填入此文氏圖的8個區域內,然後兩兩交集的地方都要非空。
可以慢慢討論。比較快一點的話就利用排容原理 \(8^4-3\times6^4+3\times5^4-4^4=1827\)
第7題,先單看其中一個點數\((1-(5/6)^{10})\),再乘以\(6\)即可。
嚴僅一點就是設\(X_k\)為點數\(k\)出現與否的隨機變數,\(k=1,\dots,6\)。
則\(E(X_k)=(1-(5/6)^{10})\),然後所求\(E(X)=E(X_1)+\cdots+E(X_6)=6(1-(5/6)^{10})\)。