發新話題
打印

111家齊高中

回復 7# nnkuokuo 的帖子

填充第 4 題
設有一張長方形的紙\(ABCD\),已知\(\overline{AB}=8\),\(\overline{BC}=4\),通過對角線\(\overline{BD}\)的中點\(M\)且垂直於\(\overline{BD}\)的直線分別交\(\overline{AB}\)與\(\overline{CD}\)於\(E\)、\(F\)兩點,當以\(\overline{EF}\)為折線把紙\(ABCD\)折起來,使得平面\(AEFD\)垂直於平面\(EBCF\),此時若\(\angle CFD=\theta\),\(0<\theta<\pi\),求\(cos\theta=\)   
[解答]
BD = 4√5,DM = 2√5
利用 △DMF 和 △DCB 相似,可求出 DF = 5,CF = 3

摺起來後 △CMD 是等腰直角三角形
摺起來後的 CD = 2√10

最後利用餘弦定理就可求出 cosθ

TOP

回復 7# nnkuokuo 的帖子

填充10
試求\(y=-x^2-3x+6\)和\(x+y-3=0\)所圍成的區域繞\(x=2\)所得的旋轉體體積為   
[解答]
可以用Pappus 定理

\( \displaystyle -x^2-3x+6 = -x+3 \; \Rightarrow \; x = -3,1 \quad , \quad  A = \int_{-3}^{1} [(-x^2-3x+6) - (-x+3)] dx = \frac{32}{3} \)

\( \displaystyle \overline{X} = \frac{ \displaystyle \int \int x dA }{ \displaystyle \int \int dA } = \frac{1}{A} \int_{-3}^{1} (-x^3 - 2x^2 + 3x) dx = \frac{ \displaystyle -\frac{32}{3} }{ \displaystyle \frac{32}{3} } = -1 \)

\( \displaystyle V = A \times 2\pi R = \frac{32}{3} \times 2 \pi \times [2 - (-1)] = 64\pi \)

TOP

請問第12題

第12題怎樣算?

TOP

回復 13# son249 的帖子

總共有28種不能連成一條線的情況
用全部扣掉不能的就可以了

TOP

計算2
設\(f(x)=\sqrt{x^4-9x^2-6x+34}-\sqrt{x^4-3x^2+4}\),當\(x=t\)時,\(f(x)\)有最大值\(M\),試求數對\((t,M)\)。
[提示]
常見的考古題

計算3
銳角三角形\(ABC\)中,試求\(\displaystyle \frac{sinA}{sinBsinC}+\frac{sinB}{sinCsinA}+\frac{sinC}{sinAsinB}\)的最小值並證明其為最小。
[提示]
小弟是用琴生不等式求\(\displaystyle cotA+cotB+cotC\)的最小值的,還想請教有無其他方法

計算4
當\(0<x<1\)時,\(x^2+ax+4\ge 0\)恆成立,試求\(a\)的範圍。
[解答]
改寫成\(\displaystyle a\leq -x-\frac{4}{x}\),設\(\displaystyle f(x)=-x-\frac{4}{x}\)
畫圖可知 \(\displaystyle x\in(0,1)\)時,\(f(x)<-5 \)
也就是取\(\displaystyle a \geq -5\)

TOP

計算4

銳角三角形\(ABC\)中,試求\(\displaystyle \frac{sinA}{sinBsinC}+\frac{sinB}{sinCsinA}+\frac{sinC}{sinAsinB}\)的最小值並證明其為最小。
[解答]
另一種算法

附件

20220421_083325.jpg (1.66 MB)

2022-4-21 20:33

20220421_083325.jpg

TOP

回復 16# son249 的帖子

搭配到外森比克不等式 厲害 受教了

TOP

請問老師11題如何得到-1這個答案?我只有算出k=3,是因為還有其他k值嗎?

TOP

回復 18# Harris 的帖子

第 11 題
已知\(abc\ne 0\),且\(\displaystyle \frac{2b+c}{a}=\frac{2c+a}{b}=\frac{2a+b}{c}\),試求\(\displaystyle \frac{(a+b)(b+c)(c+a)}{abc}=\)   
[解答]
2b + c = ak
2c + a = bk
2a + b = ck

3(a + b + c) = (a + b + c)k
k = 3 或 a + b + c = 0
a + b = - c,b + c = - a,c + a = - b 代入求值式的分子

TOP

填充12
將\(1,2,3,4,5,6,7,8,9\)共九個數字任意填入九宮格中,數字不可重複,則5個奇數至少有3個可以連成一直線(例如:下圖2種情形皆可)的機率為   
[解答]
補一下過程

附件

20220422_141306.jpg (48.37 KB)

2022-4-22 14:16

20220422_141306.jpg

TOP

發新話題