1.設數列\( \langle\; a_n \rangle\; \)遞迴定義式為\( \displaystyle \cases{\displaystyle a_1=1 \cr a_n=\frac{5a_{n-1}}{3a_{n-1}+4},(n \in N,n \ge 2) } \),求\( a_n= \)?(以n表示)
2.求\( f(x)=\sqrt{x^4-3x^2+4}+\sqrt{x^4-3x^2-8x+20} \)的最小值?及當時的x值?
88高中數學能力競賽 台北市筆試二試題
連結已失效h ttp://www.math.nuk.edu.tw/senpe ... h_TaipeiCity_02.pdf
95台中高農,96彰師附工,97文華高中,99萬芳高中都考過這題
https://math.pro/db/thread-969-1-1.html
5.若a,b,c為△ABC的三邊長,且\( \displaystyle s=\frac{a+b+c}{2} \),求證:\( \displaystyle \sqrt{s-a}+\sqrt{s-b}+\sqrt{s-c} \le \frac{\sqrt{a}+\sqrt{b}+\sqrt{c}}{\sqrt{2}} \)
a,b,c為△ABC的三邊長,試證明\( \sqrt{a+b-c}+\sqrt{a-b+c}+\sqrt{-a+b+c} \le \sqrt{a}+\sqrt{b}+\sqrt{c} \)
(1996APMO,
http://www.cms.math.ca/Competitions/APMO/exam/apmo1996.html
97中二中,h ttp://forum.nta.org.tw/examservice/showthread.php?t=44807 連結已失效
99新竹實驗中學 都考過這題)
7.
解\( \displaystyle x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}} \)
[解答]
\( \displaystyle \left(\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\right)\left(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}\right)=x-1 \)
\( \displaystyle \left( x \right)\left(\sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}\right)=x-1 \)
\( \displaystyle \sqrt{x-\frac{1}{x}}-\sqrt{1-\frac{1}{x}}=\frac{x-1}{x} \)
\( \displaystyle \sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}=x \)
兩式相加得到\( \displaystyle 2 \sqrt{x-\frac{1}{x}}=(x-\frac{1}{x})+1 \)
\( \displaystyle 4 \left( x-\frac{1}{x} \right)=\left( x-\frac{1}{x} \right)^2+2 \left( x-\frac{1}{x} \right)+1 \)
\( \displaystyle \left( x-\frac{1}{x} \right)^2-2 \left(x-\frac{1}{x} \right)+1=0 \)
\( \displaystyle \left( x-\frac{1}{x}-1 \right)^2=0 \)
\( \displaystyle x-\frac{1}{x}-1=0 \)
\( x^2-x-1=0 \)
\( \displaystyle x=\frac{1 \pm \sqrt{5}}{2} \)
112.8.21補充出處
Find all real numbers \(x\) such that \(\displaystyle x=\left(x-\frac{1}{x}\right)^{1/2}+\left(1-\frac{1}{x}\right)^{1/2}\)
(1998加拿大數學奧林匹亞,
https://cms.math.ca/wp-content/uploads/2019/07/exam1998.pdf)
其他類似問題請一併準備
解方程式\( \displaystyle \sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}=x \)
(初中數學競賽教程P58)
解方程式\( \displaystyle \sqrt{1-\frac{1}{2x}}+\sqrt{2x-\frac{1}{2x}}=2x \)
(94台北縣高中聯招)
http://forum.nta.org.tw/oldphpbb2/viewtopic.php?t=36653
http://forum.nta.org.tw/examservice/showthread.php?t=12804
解方程式\( \displaystyle \sqrt{x+\frac{1}{x}+1}+\sqrt{x+\frac{1}{x}}=x \)
(建中通訊解題第55期)
111.7.1補充
若\(a\)是\(\displaystyle \sqrt{1-\frac{1}{x}}+\sqrt{x-\frac{1}{x}}=x\)的解,則\(a=\)
。
(101桃園農工,
https://math.pro/db/thread-1379-1-6.html)
8.若\( \cases{ax+by=3 \cr ax^2+by^2=7 \cr ax^3+by^3=16 \cr ax^4+by^4=42} \),求\( ax^5+by^5= \)?
更多類似題目請見
https://math.pro/db/thread-799-1-2.html