發新話題
打印

110新竹高中

今天考試時有消防車,外面很吵的原因
h ttps://udn.com/news/story/7320/5378812 連結已失效
---
不知道可否分享這個?若不妥我再刪除。

TOP

填充4

填充四
若\(0^{\circ}\le x^{\circ}<360^{\circ}\)且\(sin20^{\circ}=\sqrt{3}cos40^{\circ}+sinx^{\circ}\),則\(x=\)?
[解答]
有錯請不吝指正

附件

1618045177332.jpg (78.08 KB)

2021-4-10 17:00

1618045177332.jpg

TOP

引用:
原帖由 Superconan 於 2021-4-10 16:46 發表
感謝呆呆右老師分享題目
我將老師提供的試題與我記得的部分合併,打成檔案,題號順序是正確的。
若題目敘述有需要更正的部分,再請老師們留言告知。
計算最後一題有點忘記是不是第一小題四分,第二小題六分。 ...
感謝 Superconan老師 打上題目
稍微提一下,計算4我記得題目並沒有提到z的絕對值=1 這件事
這應該是推論過程之中才會得到的

TOP

引用:
原帖由 Superconan 於 2021-4-10 16:46 發表
感謝呆呆右老師分享題目
我將老師提供的試題與我記得的部分合併,打成檔案,題號順序是正確的。
若題目敘述有需要更正的部分,再請老師們留言告知。
計算最後一題有點忘記是不是第一小題四分,第二小題六分。 ...
感謝以上老師幫忙還原題目。
z+1/z...那題,補上n是任意正整數
|z|我記得題目沒有說
可以證明的是z=r(cos(theta)+isin(theta))
(1)sin(theta)=0,...(r不必然為1)
(2)sin(theta)不等於0,可證得r=1,...

結果#13F先講了

TOP

回復 8# thepiano 的帖子

想問AB為何可以這樣表示,謝謝

TOP

引用:
原帖由 Superconan 於 2021-4-10 17:39 發表


謝謝老師,已更新。
計算第五題的配分,應該是6分跟4分
另外方便我之後將老師最終的檔案
放在1F附件嗎?

TOP

引用:
原帖由 studentJ 於 2021-4-10 17:36 發表
想問AB為何可以這樣表示,謝謝
考慮拋物線定義,並假設線段與x軸正向夾角,即可寫出鋼琴老師的式子~
我考場內也是算出16~

TOP

回復 15# 呆呆右 的帖子

我記得計算的第4題n是整數,不是正整數

TOP

回復 18# zidanesquall 的帖子

我記得應該是正整數,因為我一看到n是正整數,馬上想到會不會是用數學歸納法來證

TOP

回復 16# studentJ 的帖子

A(x_1,y_1)、B(x_2,y_2)
直線 AB:y = tanθ(x - c)
y^2 = 4cx

[tanθ(x - c)]^2 = 4cx
(tanθ)^2 * x^2 - [2c(tanθ)^2 + 4c]x + c^2 * (tanθ)^2 = 0
x_1 + x_2 = 2c + [4c / (tanθ)^2]

AF = x_1 + c,BF = x_2 + c
AB = x_1 + x_2 + 2c = 4c + [4c / (tanθ)^2] = 4c / (sinθ)^2

TOP

發新話題