回復 4# Sandy 的帖子
計算第2題
空間中有點\(O(0,0,0)\),\(A(5,-4,3)\)及平面\(E\):\(x+2y+2z=0\),\(P\)是平面\(E\)上的動點。
(a)求\(\displaystyle \frac{\overline{OP}}{\overline{AP}}\)的最大值。
(b)求此時\(P\)點座標。
[解答]
在\(\Delta OAP\)中,作\(\overline{AH}\)垂直\(\overline{OP}\)於\(H\)
由正弦定理,\(\frac{\overline{OP}}{\overline{AP}}=\frac{\sin \angle OAP}{\sin \angle AOP}=\frac{\sin \angle OAP}{\frac{\overline{AH}}{\overline{AO}}}=\frac{5\sqrt{2}\sin \angle OAP}{\overline{AH}}\)
其最大值出現在\(\overline{AH}\)最小,而\(\sin \angle OAP\)最大時
此時,\(\frac{\overline{OP}}{\overline{AP}}=\frac{5\sqrt{2}\times 1}{\frac{\left| 5-8+6 \right|}{\sqrt{{{1}^{2}}+{{2}^{2}}+{{2}^{2}}}}}=5\sqrt{2}\)
\(\begin{align}
& {{\overline{OA}}^{2}}=\overline{OH}\times \overline{OP} \\
& \overline{OP}=\frac{50}{7} \\
& \frac{\overline{OP}}{\overline{OH}}=\frac{50}{49} \\
& H\left( \frac{14}{3},-\frac{14}{3},\frac{7}{3} \right) \\
& P\left( \frac{100}{21},-\frac{100}{21},\frac{50}{21} \right) \\
\end{align}\)
[ 本帖最後由 thepiano 於 2020-6-22 18:07 編輯 ]