填充題
1.已知大於或等於正整數n的整數都可以表成\( 5a+14b+21c \)的形式,其中a,b,c為正整數,則n的最小值為?
對於大於n所有自然數均可表示為\( 6a+9b+20c \),其中a,b,c為非負整數,求最小的正整數n=?
(98北一女,
https://math.pro/db/viewthread.php?tid=784&page=1#pid2077)
2010.12.10補充
假設小翔有無限多顆5克砝碼和13克砝碼,但他發現沒辦法組合出n克重量(\( n \in N \)),求n的最大值為
(RA148.swf)
公式:當正整數\( a,b \)互質時,不能用\( a,b \)組合出的最大正整數為\( ab-a-b \)
計算題
5.已知\( \displaystyle (1+4x)(1+4x^3)(1+4x^{3^2})(1+4x^{3^3})(1+4x^{3^4})(1+4x^{3^5}) \)乘開後,依升冪排列可以寫成
\( \displaystyle (1+4x)(1+4x^3)(1+4x^{3^2})(1+4x^{3^3})(1+4x^{3^4})(1+4x^{3^5})=1+b_1 x^{a_1}+b_2 x^{a_2}+b_3 x^{a_3}+...+b_{63} x^{a_{63}} \),
其中\( \langle\ a_n \rangle\ \),\( \langle\ b_n \rangle\ \)是兩個正整數的數列,且\( 1=a_1<a_2<a_3<...<a_{63} \)。
(1)試求\( a_{25} \)及\( b_{25} \)之值。
(2)試求\( a_1+a_2+a_3+...+a_{63} \)及\( b_1+b_2+b_3+...+b_{63} \)。
[提示]
(1)
25的二進位為11001
\( \matrix{243 & 81 & 27 & 9 & 3 & 1 \cr & 1 & 1 & 0 & 0 & 1} \)
\( a_{25}=109 \),\( b_{25}=64 \)
(2)
\( a_1+a_2+a_3+...+a_{63}=(243+81+27+9+3+1) \times 32=11648 \)
\( b_1+b_2+b_3+...+b_{63}=(1+4)^6-1=12564 \)
其他相關題目請見
(我的教甄準備之路 多項式連乘)
https://math.pro/db/viewthread.php?tid=661&page=2#pid2045
2010.5.18
感謝weiye提醒
\( (243+81+27+9+3+1) \times 32 \)應為11648
[
本帖最後由 bugmens 於 2010-12-10 10:06 PM 編輯 ]