回復 25# tuhunger 的帖子
第3題另解
由集合\(S=\{\;2^1,2^2,2^3,\ldots,2^{200},2^{201}\}\;\)中一次選三個相異元素,則此三個元素可排成遞增的等比數列之方法有幾種?
[解]
奇次項\(A=\{\;2^1,2^3,\ldots,2^{201}\}\;\),\(n(A)=101\)
偶次項\(B=\{\;2^2,2^4,\ldots,2^{200}\}\;\),\(n(B)=100\)
利用等比中項:\(b^2=ac \Rightarrow a,c\)次方和必為偶數
\( \matrix{C_2^{101}&+&C_2^{100}&=\frac{101 \times 100}{2}+\frac{100\times 99}{2}=10000種 \cr (奇+奇)&&(偶+偶)&}\)