發新話題
打印

105鳳山高中

填充5
求\(\displaystyle \lim_{n\to\infty}\frac{\left(\frac{1}{2n}\right)^p+\left(\frac{2}{2n}\right)^p+\ldots+\left(\frac{2n}{2n}\right)^p}
{\left(\frac{1}{2}+\frac{1}{2n}\right)^p+\left(\frac{1}{2}+\frac{2}{2n}\right)^p+\ldots+\left(\frac{1}{2}+\frac{n}{2n}\right)^p}\)之值\((p>0)\)   
[解答]
是黎曼和

獻醜後,我想弱弱的問 第一題  或者是否有高手願意給提示?
感覺很簡單 但是越算越亂

111.2.14補充
108中科實中雙語部,https://math.pro/db/viewthread.php?tid=3122&page=3#pid22320

附件

IMAG0002.jpg (71.99 KB)

2016-5-24 12:20

IMAG0002.jpg

TOP

回復 5# Ellipse 的帖子

印象中考試看到的題目是說從P出發繞一圈回P,不是到B。

TOP

回復 11# 5pn3gp6 的帖子

您好~我是用旋轉矩陣去做,向量AB轉60度到向量AC。

TOP

回復 9# drexler5422 的帖子

第11題
找出所有滿足下列條件的函數\(f\):對於不為0或1的任意實數,都有\(\displaystyle f(x)+f(1-\frac{1}{x})=x+1+\frac{1}{x-1}\)。答:   
[解答]
我的解法有點複雜,可能請其他老師幫忙補充
令 t=\(1-\displaystyle\frac{1}{x}\)
帶入題目
\(f(x)+f\left(\displaystyle1-\frac{1}{x}\right)=x+1+\displaystyle\frac{1}{x-1}\)....(1)
經過整理後,得到
\(f(x)+f\left(\displaystyle\frac{1}{1-x}\right)=\displaystyle\frac{1}{x}+\displaystyle\frac{1}{1-x}\)....(2)
將(1)+(2)得到
\(2f(x)+f\left(\displaystyle\frac{1}{1-x}\right)+f\left(1-\displaystyle\frac{1}{x}\right)=x+\displaystyle\frac{1}{x}+1\)
其中
\(f\left(\displaystyle\frac{1}{1-x}\right)+f\left(1-\displaystyle\frac{1}{x}\right)=-x-\displaystyle\frac{1}{x}+2\)

打完才發現鋼琴老師已經寫完了
鋼琴老師的方法比較簡潔有力

TOP

回復 9# drexler5422 的帖子

第11題
找出所有滿足下列條件的函數\(f\):對於不為0或1的任意實數,都有\(\displaystyle f(x)+f(1-\frac{1}{x})=x+1+\frac{1}{x-1}\)。答:   
[解答]
\(\displaystyle f\left( x \right)+f\left( 1-\frac{1}{x} \right)=x+1+\frac{1}{x-1}\)

\(x\)用\(\displaystyle 1-\frac{1}{x}\)代入上式,可得

\(f\left(\displaystyle 1-\frac{1}{x} \right)+f\left( \frac{1}{1-x} \right)=2-\frac{1}{x}-x\)

\(x\)再用\(\displaystyle 1-\frac{1}{x}\)代入上式,可得

\(\displaystyle f\left( \frac{1}{1-x} \right)+f\left( x \right)=1+\frac{1}{x}-\frac{x}{x-1}\)

三式相加除以2,再減去第二式即得

TOP

第9題
已知一拋物線與直線\(x+3y=4\)相切於\((4,0)\),與直線\(5x+3y=-16\)相切於\((4,-12)\),則此拋物線方程式為   
[提示]
請參考老王的夢田
http://lyingheart6174.pixnet.net ... 9%E7%A8%8B%E5%BC%8F

TOP

問題請教

其實這張問題還真的很多~~
想請教
填充3、4、7、9、10、11
計算2
其中填充第三題,為什麼答案不是90啊?

附檔是我小小貢獻 請大家笑納
1.
設正\(\Delta ABC\),\(A(0,0)\),\(B(b,11)\),\(C(c,37)\),則\(bc\)值為   


2.
\(\overline{AB}=8\),以\(\overline{AB}\)為直徑的半圓上有\(C\)、\(D\)兩點,且\(\overline{AC}=2\),\(\overline{BD}=7\),求\(\overline{CD}\)的長度=   

[local]3[/local]
8.
\(\Delta ABC\)中,\(\overline{BC}=a,\overline{AC}=b,\overline{AB}=c\),若\(A\)、\(B\)、\(C\)成等差數列,則\(\displaystyle tan\frac{A}{2}tan\frac{C}{2}=\)   

TOP

回復 10# thepiano 的帖子

謝謝the piano:)
我是用:
a+a+b/3+2/a+6/ab去計算,
但是忘記驗算是否成立。

TOP

[quote]原帖由 chiang 於 2016-5-24 11:55 PM 發表
其實這張問題還真的很多~~
想請教
填充3、4、7、9、10、11
計算2
其中填充第三題,為什麼答案不是90啊?


填充3
在平面坐標系上,設\(A(1,0)\),\(B(-1,0)\),以\(\overline{AB}\)為直徑的單位圓,將其上半圓分成180等分,其分點為\((x_1,y_1),(x_2,y_2),\ldots,(x_{179},y_{179})\),則\(\displaystyle \sum_{n=1}^{179}x_n^2=\)   
[解答]
原式=\(\displaystyle\sum^{179}_{n=1}\cos^2(\frac{n}{180}\pi)=\sum^{89}_{n=1} \cos^2(\frac{n}{180}\pi)+\cos^2\frac{\pi}{2}+\sum^{179}_{n=91} \cos^2(\frac{n}{180}\pi)\)

\(\displaystyle=\sum^{44}_{n=1} \left(\cos^2(\frac{n}{180}\pi)+\sin^2(\frac{n}{180}\pi)\right)+\cos^2\frac{\pi}{4}+0+\sum^{134}_{n=91} \left(\cos^2(\frac{n}{180}\pi)+\sin^2(\frac{n}{180}\pi)\right)+\cos^2\frac{3\pi}{4}=44+\frac{1}{2}+0+44+\frac{1}{2}=89\)

我在考場也寫90.....  後來發現我不小心弄成\(\sin\)去算了.... 所以多了\(\sin\frac{\pi}{2}\)
你可以檢查看看

填充7


另外 感謝你其他題的分享

TOP

回復 17# chiang 的帖子

第3題
\(\begin{align}
  & {{\cos }^{2}}{{1}^{{}^\circ }}+{{\cos }^{2}}{{2}^{{}^\circ }}+{{\cos }^{2}}{{3}^{{}^\circ }}+\cdots +{{\cos }^{2}}{{179}^{{}^\circ }} \\
& =\left( {{\cos }^{2}}{{1}^{{}^\circ }}+{{\cos }^{2}}{{91}^{{}^\circ }} \right)+\left( {{\cos }^{2}}{{2}^{{}^\circ }}+{{\cos }^{2}}{{92}^{{}^\circ }} \right)+\cdots +\left( {{\cos }^{2}}{{89}^{{}^\circ }}+{{\cos }^{2}}{{179}^{{}^\circ }} \right) \\
& =89 \\
\end{align}\)

第4題
考古題,用"傾斜”在此站搜尋

TOP

發新話題