幫忙打字,節省論壇空間
Q:試證\( \displaystyle \frac{a^3}{(a-b)(a-c)}+\frac{b^3}{(b-c)(b-a)}+\frac{c^3}{(c-a)(c-b)}=a+b+c \)
pf:Lemma
\( \displaystyle \frac{a}{(a-b)(a-c)}+\frac{b}{(b-c)(b-a)}+\frac{c}{(c-a)(c-b)}=0 \)--①
\( \displaystyle \frac{a^2}{(a-b)(a-c)}+\frac{b^2}{(b-c)(b-a)}+\frac{c^2}{(c-a)(c-b)}=1 \)--②
設所求為k--③,令\( \displaystyle x=\frac{1}{(a-b)(a-c)} \),\( \displaystyle y=\frac{1}{(b-c)(b-a)} \),\( \displaystyle z=\frac{1}{(c-a)(c-b)} \)--④
可列出聯立方程組\( \displaystyle \cases{ax+by+cz=0 \cr a^2x+b^2y+c^2z=1 \cr a^3x+b^3y+c^3z=k} \)
∴\( \displaystyle \Delta=\left|\ \matrix{a & b & c \cr a^2 & b^2 & c^2 \cr a^3 & b^3 & c^3} \right|\ =abc(a-b)(b-c)(c-a) \)
\( \displaystyle \Delta \cdot x=abc(a-b)(b-c)(c-a)\cdot \frac{1}{(a-b)(a-c)}=-abc(b-c) \)--⑤
又\( \Delta_x=\left|\ \matrix{0 & b & c \cr 1 & b^2 & c^2 \cr k & b^3 & c^3} \right|\ =bc(b-c)(b+c-k) \)--⑥
比較⑤& ⑥ ∴\( b+c-k=-a \),\( k=a+b+c \)
[ 本帖最後由 Ellipse 於 2014-11-5 08:40 PM 編輯 ]