發新話題
打印

103嘉義高中

回復 10# natureling 的帖子

這邊用到托勒密定理比較方便的地方應該是BE / AB = \(\frac{\sqrt{5}+1}{2}\)
令BE=x , 則 \(x\cdot x=x\cdot 1+1\cdot 1\Rightarrow x=\frac{\sqrt{5}+1}{2}\)

TOP

回復 8# Ellipse 的帖子

果然橢圓兄化減得簡潔漂亮多了~容小弟整理一下:
(1) 若本題面積改為任意的實數\(k>0\), 由橢圓兄提供的簡潔面積算式可推出:
    \[\frac{1}{6}{{\left( \beta -\alpha  \right)}^{3}}=k\Rightarrow {{\left( \beta -\alpha  \right)}^{3}}=6k\], 由於\(\beta >\alpha \), 取\(\beta -\alpha =\sqrt[3]{6k}\),仿橢圓兄作法,另一方面,由\[{{\left( \alpha -\beta  \right)}^{2}}={{\left( \alpha +\beta  \right)}^{2}}-4\alpha \beta =\sqrt[3]{36{{k}^{2}}}=4{{X}^{2}}-4\alpha \beta \Rightarrow \alpha \beta ={{X}^{2}}-\frac{\sqrt[3]{36{{k}^{2}}}}{4}\].
    故中點\(\left( X,Y \right)\)滿足方程式\(Y=2{{X}^{2}}-\alpha \beta ={{X}^{2}}+\frac{\sqrt[3]{36{{k}^{2}}}}{4}\).
    這形式的重點應該是說,無論面積為何,所求軌跡必為一以\(y\)軸為軸之拋物線。

(2) 利用此結論,做填充題時我們只要求出頂點即可,解\(\int_{-\alpha }^{\alpha }{\left( {{\alpha }^{2}}-{{x}^{2}} \right)dx}=\frac{4}{3}\), 可馬上得到\(\alpha =1\), 故本題答案\(y={{x}^{2}}+1\).

TOP

回復 12# hua0127 的帖子

請問最後一行的積分式如何來的?

[ 本帖最後由 Herstein 於 2014-6-8 09:45 AM 編輯 ]

TOP

計算1. 試求滿足103x+17y=2014的所有正整數解及一般整數解。
法1:歐拉法
17y=2014-103x
17y=118*17+8-6*17x-x
y=118-6x +1/17(8-x)
Let x=8+17t,t∈Z
y=118-6(8+17t)-t=70-103t
當t=0時 x,y為正整數解

法2:輾轉相除法
由輾轉相除法原理得知 (103,17)=1且1=103-17*6
同乘2014
2014=103*2014-17*6*2014
Put x=2014,y=-6*2014
Let x=2014+17t,y=-6*2014-103t,t∈Z
欲求x,y都是正整數
x=2014+17t > 0
t>-118.‧‧‧‧‧‧
y=-6*2014-103t > 0
t<-117.‧‧‧‧‧‧
故知t=-118
帶入x=2014+17t,y=-6*2014-103t
x=8,y=70

小弟的數論和微分方程算是很弱的一環,常常考試的時候都敗在這類題目,不知道各位老師有沒有更快的做法?

[ 本帖最後由 wrty2451 於 2014-6-8 01:08 PM 編輯 ]

TOP

引用:
原帖由 wrty2451 於 2014-6-8 10:36 AM 發表
計算1. 試求滿足103x+17y=2014的所有正整數解及一般整數解。

17y=2014-103x
17y=118*17+8-6*17x-x
y=118-6x +1/17(8-x)
Let x=8+17t
y=118-6(8+17t)-t=70-103t

當t=0時 x,y為正整數解

小弟的數論和微分方程算是很弱的 ...
法1:輾轉相除法

法2:歐拉法 (就是您用的方法)

法3:連分式

法4:聽說還可以用矩陣做

[ 本帖最後由 Ellipse 於 2014-6-8 10:48 AM 編輯 ]

TOP

回復 15# Ellipse 的帖子

原來那叫做歐拉法......
謝謝橢圓兄
我再想想要如何利用另外的做法算出來

TOP

引用:
原帖由 wrty2451 於 2014-6-8 10:51 AM 發表
原來那叫做歐拉法......
謝謝橢圓兄
我再想想要如何利用另外的做法算出來
這些方法的原理都來自
"輾轉相除法"

TOP

回復 13# Herstein 的帖子

考慮直線為水平線\(y={{\alpha }^{2}}\)時,
此時中點會產生在拋物線的軸上,此點必為頂點

TOP

回復 15# Ellipse 的帖子

橢圓兄所提到的矩陣法應該是這個方法:

考慮增廣矩陣做列運算\(\left( \begin{matrix}
   103 & 1 & 0  \\
   17 & 0 & 1  \\
\end{matrix} \right)\to \left( \begin{matrix}
   1 & 1 & -6  \\
   17 & 0 & 1  \\
\end{matrix} \right)\to \left( \begin{matrix}
   1 & 1 & -6  \\
   0 & -17 & 103  \\
\end{matrix} \right)\)
則不定方程式\(103x+17y=2014\)的整數通解為
\(\left\{ \begin{align}
  & x=2014\left( 1 \right)-17t \\
& y=2014\left( -6 \right)+103t \\
\end{align} \right.,t\in \mathbb{Z}\)

其實不會特別快XD,速度上差不多,原理都是找一組特解再放大(輾轉相除法)

[ 本帖最後由 hua0127 於 2014-6-8 03:04 PM 編輯 ]

TOP

計算2-2
以下提供幾何方式,運用托勒密定理而不用餘弦定理

\(\displaystyle mn=ac+bd \cdots (1) \)

過C作BD平行線與圓交於E,連接EB、ED、EA,那麼 \(\displaystyle BE=CD=c,DE=BC=b \)

再對ABED用托勒密定理得到 \(\displaystyle n \times AE=ab+cd  \cdots (2) \)

同樣的過B作AC的平行線與圓交於F,連接FA、FC、FD,那麼 \(\displaystyle FA=BC=b,FC=AB=a \)

再對AFCD用托勒密定理得到 \(\displaystyle m \times DF=ad+bc  \cdots (3) \)

因為 \(\displaystyle DE=BC=AF \),所以 \(\displaystyle AE=DF \)

(1)(3)相乘再除以(2) 得到  \(\displaystyle m^2=\frac{(ac+bd)(ad+bc)}{ab+cd} \)

(1)(2)相乘再除以(3) 得到  \(\displaystyle n^2=\frac{(ac+bd)(ab+cd)}{ad+bc} \)

最後得證

另外,填充12要記公式的話,推薦  \(\displaystyle a \cos A+b \cos B+c \cos C \)
雖不好算,但很實在。

[ 本帖最後由 lyingheart 於 2014-6-8 10:39 PM 編輯 ]

附件

婆羅摩笈多對角線公式.png (32.66 KB)

2014-6-8 22:37

婆羅摩笈多對角線公式.png

TOP

發新話題