回復 29# David 的帖子
計算 2
1. 先證 \( \cos(\alpha-\beta)=-\frac{1}{2} \)
\( (\cos\alpha+\cos\beta)^{2}+(\sin\alpha+\sin\beta)^{2}=\cos^{2}\gamma+\sin^{2}\gamma \)
\( \Rightarrow2+2\cos(\alpha-\beta)=1\Rightarrow\cos(\alpha-\beta)=\frac{-1}{2} \)
2. 再證 \( \cos(\alpha+\beta)=-(\cos2\alpha+\cos2\beta) \)
\( \cos2\beta+\cos2\gamma=2\cos(\alpha+\beta)\cos(\alpha-\beta)=-\cos(\alpha+\beta) \) by 1
3. 證明 \( \cos2\alpha+\cos2\beta+\cos2\gamma=0 \)
\( (\cos\alpha+\cos\beta)^{2}-(\sin\alpha+\sin\beta)^{2}=\cos^{2}\gamma-\sin^{2}\gamma \)
\( \Rightarrow\cos2\alpha+\cos2\beta+2\cos(\alpha+\beta)=\cos2\gamma \)
\( \cos2\alpha+\cos2\beta+\cos2\gamma=0 \) by 2
4. 先證 \( \sin(\alpha+\beta)=-(\sin2\alpha+\sin2\beta) \)
\( \sin2\alpha+\sin2\beta=2\sin(\alpha+\beta)\cos(\alpha-\beta) \)
\( \Rightarrow\sin2\alpha+\sin2\beta=-\sin(\alpha+\beta) \) by 1
5. 證明 \( \sin2\alpha+\sin2\beta+\sin2\gamma =0 \)
\( \sin\gamma\cos\gamma=(\sin\alpha+\sin\beta)(\cos\alpha+\cos\beta) \) ,和差化積得
\( \Rightarrow\frac{1}{2}\sin2\gamma=2^{2}\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} \)
\( \Rightarrow\frac{1}{2}\sin2\gamma=\sin(\alpha+\beta)\cdot(1+\cos(\alpha-\beta)) \)
\( \Rightarrow\sin2\alpha+\sin2\beta+\sin2\gamma \) by 1,4.
另證. 向量 \( (\cos\alpha, \sin\alpha), (\cos \beta, \sin \beta), (\cos \gamma. \sin \gamma) \) 頭尾相連形成一個三角形,故兩兩夾 \( 120^\circ \)。
不失一般性,可假設 \( \beta = \alpha + 120^\circ \), \( \gamma = \alpha - 120^\circ \),代入,和角公式,即得證。
[ 本帖最後由 tsusy 於 2014-5-27 10:17 PM 編輯 ]