計算1:另解
令f(x)=x^12+7x^11+1-----------(*1)
先將(x²-x+1)乘以(x+1)
令(x+1)(x²-x+1)=0 ,x^3= -1-------------(*2)
假設w=(1+√3i)/2 , -w²=(1-√3i)/2 為(*2)兩根
將x^3= -1代入(*1) , (x^3)^4 + 7*(x^3)^3*x²+1
化簡得2-7x²
所求=(2-7w²)[2-7(-w²)²]=(2-7w²)(2+7w)
=4+14(-w²+w)-49w^3 (w²-w+1=0 , -w²+w=1)
=4+14+49=67
[ 本帖最後由 Ellipse 於 2014-5-18 10:09 PM 編輯 ]