1.
2.矩陣\(\displaystyle\left[ {\begin{array}{*{20}{c}}
1&2\\
3&4
\end{array}} \right]\)為一線性變換,試說明其在幾何上的意義
3.令\(\overrightarrow \alpha = ({a_1},{a_2},{a_3}),\overrightarrow {\beta } = ({b_1},{b_2},{b_3}),\overrightarrow \gamma = ({c_1},{c_2},{c_3})\)
證明下面五個敘述為等價
(1)三向量線性獨立
(2)行列式≠0
(3)\(\left\{ {\begin{array}{*{20}{c}}
{{a_1}x + {b_1}y + {c_1}z = 0}\\
{{a_2}x + {b_2}y + {c_2}z = 0}\\
{{a_3}x + {b_3}y + {c_3}z = 0}
\end{array}} \right.\)有唯一解x=y=z=0
(4)A=\(\left[ {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}}\\
{{a_2}}&{{b_2}}&{{c_2}}\\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right]\)有反矩陣
(5)\(\overrightarrow \delta = x\overrightarrow \alpha + y\overrightarrow \beta + z\overrightarrow \gamma \)有唯一表示法
4.有一球S:\({x^2} + {y^2} + {(z - 1)^2} = 1\)與一點P(0,3,2),過P作此球的切線,交xy平面的點形成一拋物線,求正焦弦長
5.有一正十二面體(各面皆為正五邊形),外接正立方體邊長為\(R\),內接正立方體邊長為\(r\),求\(\frac{R}{r}\)
6.有一半徑為1的圓O,及一高為1的等腰三角形ABC,圓O在三角形ABC底邊滾動,且圓與三角形兩腰分別交於D、E點,證∠DOE為定值
7.\(\angle BAC\)為一銳角,有一圓C在角的內部,分別在\(\overrightarrow {AB} ,\overrightarrow {AC} \)及圓C上取P、Q、R點,當三點位置為何,三角形PQR周長最小,證明你的想法
8.已知
\(\displaystyle{(\sqrt 2 - 1)^2} = \sqrt 9 - \sqrt 8 \)
\(\displaystyle{(\sqrt 2 - 1)^3} = \sqrt {50} - \sqrt {49} \)
\(\displaystyle{(\sqrt 2 - 1)^4} = \sqrt {289} - \sqrt {288} \)
試證明對於任意正整數\(n\),皆存在正整數\(m\)使得\(\displaystyle{(\sqrt 2 - 1)^n} = \sqrt {m + 1} - \sqrt m \)
相關問題,
https://math.pro/db/viewthread.php?tid=2769&page=1#pid17237
9.擲一公正硬幣若干次,擲出正面得1分,擲出反面得2分
若\(\displaystyle{p_n}\)表示得到n分的機率
(1)列出\(\displaystyle{p_n}\)的遞迴關係式並說明
(2)解出\(\displaystyle{p_n}\)一般式
有第1題忘記了,請各位補上