令 \(\displaystyle A = \left[ \begin{array}{*{20}{c}}
1 & 1 \\
- 2 & - 1 \\
\end{array} \right]\),
由 \(det(A-\lambda I)=0\),可解得 eigen-values: \(\lambda=i, -i.\)
當 \(\lambda=i\) 時,令其對應 eigen-vector 為 \(\displaystyle v = \left[ \begin{array}{*{20}{c}}
x \\
y \\
\end{array} \right]\),
由 \(Av=\lambda v\Rightarrow \left[ \begin{array}{*{20}{c}}
1 & 1 \\
- 2 & - 1 \\
\end{array} \right]\left[ \begin{array}{*{20}{c}}
x \\
y \\
\end{array}\right]=i\left[ \begin{array}{*{20}{c}}
x \\
y \\
\end{array}\right]\)
\(\displaystyle \left\{ {\begin{array}{*{20}{c}}
(1-i)x+y=0 \\
2x+(1+i)y=0 \\
\end{array}} \right.\),這兩式是相同的(將第一式乘以\(1+i\) 可得第二式),
所以令 \(y=1\),可得 \(\displaystyle x=-\frac{1}{2}-\frac{i}{2}\),
亦即對應的 eigen-vector 為 \(\displaystyle \left[ \begin{array}{*{20}{c}}
-\frac{1}{2}-\frac{i}{2} \\
1 \\
\end{array} \right].\)
另外,當 \(\lambda=-i\) 時,方法同上。