回復 1# diow 的帖子
令\(\angle ACB=\theta \),\(\pi \le \theta \le 2\pi \),圓半徑\(r\)
\(r\theta =20\)
斜線部份面積
\(\begin{align}
& =\frac{{{r}^{2}}\theta }{2}-\frac{{{r}^{2}}\sin \theta }{2} \\
& =10r-\frac{{{r}^{2}}\sin \left( \frac{20}{r} \right)}{2} \\
\end{align}\)
微分可知\(\theta =\frac{20}{r}=\pi \),即\(r=\frac{20}{\pi }\)時,有最大值\(\frac{200}{\pi }\)