填充8.
f(x)=(x-p)(x-q)pq/[(r-p)(r-q)]+(x-p)(x-r)pr/[(q-p)(q-r)]+(x-r)(x-q)rq/[(p-r)(p-q)]
f(p+q+r)=[(q+r)(p+r)pq(q-p)+(q+r)(p+q)pr(p-r)+(p+q)(p+r)rq(r-q)]/[(p-q)(q-r)(r-p)]
在上面的分子中,當p=q 時,其值為0,由因式定理知有(p-q)因式,同理可知也有(q-r),(r-p)的因式,
設此分子=[(p-q)(q-r)(r-p)][a(p^2+q^2+r^2)+b(pq+qr+rp)],比較係數得 a=0,b=1,
故f(p+q+r)=pq+qr+rp
[ 本帖最後由 laylay 於 2024-4-30 12:29 編輯 ]