12.
設\(n\)是正整數且使得\((31.5)^n+(32.5)^n\)為正整數,則所有可能值\(n\)的總和為 。
[解答]
有錯還請指教
\(\displaystyle (32+\frac{1}{2})^n+(32-\frac{1}{2})^n\),易知\(n\)為奇數
利用二項式定理化簡展開
可得\(\displaystyle 2\cdot 32^n +2\ C^n_{2} (\frac{1}{2})^2 \cdot 32^{n-2}+\cdots +2\ C^n_{n-1} (\frac{1}{2})^{n-1} \cdot 32\)
可知\(\displaystyle 2\times (\frac{1}{2})^{n-1} \cdot 32 \in \mathbb{N} \Rightarrow n-1<6 \Rightarrow n<7 \)
取\(n=1,3,5\),總和9
1/17 更正
感謝cut6997老師的指正