已知在一個與變化量\(x\)、\(y\)有關的線性規劃作業中,有三個限制條件。在坐標平面上畫出符合這三個限制條件的區域,最後得到的可行解區域是一個三角形\(ABC\)及其內部區域(包含邊界),已知\(A(3,3)\),\(B(5,-7)\),\(C(\alpha,\beta)\)。在此可行解區域中,當目標函數為\(f(x,y)=x+2y\)時,得到在\(A\)點有最大值,在\(B\)點有最小值。現因環境條件改變的需要,加入了第四個限制條件\(ax+by\le c\),結果符合所有限制條件的可行解區域變成一個四邊形區域,頂點少了\(A(3,3)\),但新增了頂點\(D(1,1)\),\(E(4,-2)\)。若已知滿足上述條件的\(C(\alpha,\beta)\),其中\(\alpha\)可能的最小範圍為\(m \le \alpha<n\),\(m\)、\(n\)為整數。請問數對\((m,n)=\)?
請問 四 2.