計算2.
設x為有理數,將(x+1)(x-2)的小數第一位予以「四捨五入」後所得的整數為1+5x ,則x的值為多少?
[解答]
假設\displaystyle x=\frac{m}{5},m\in \mathbb{Z}
則原數為\displaystyle (\frac{m}{5}+1)(\frac{m}{5}-2),四捨五入後的數字為\displaystyle 1+m
可知\left\{
\begin{array}{LL}
m+\frac{1}{2}\leq \displaystyle (\frac{m}{5}+1)(\frac{m}{5}-2)<m+1 \\
or \\
m+1\leq \displaystyle (\frac{m}{5}+1)(\frac{m}{5}-2)<m+\frac{3}{2}
\end{array}
\right.
若是\displaystyle m+\frac{1}{2}\leq \displaystyle (\frac{m}{5}+1)(\frac{m}{5}-2)<m+1
整理化簡後可得 \displaystyle 62.5\leq m^2-30m<75
\displaystyle m^2-30m=63,64,\cdots ,73,74,利用同餘篩選並檢驗發現只有64符合題意
解得m=32或是m=-2,對應到\displaystyle x=\frac{32}{5},x=\frac{-2}{5}
若是\displaystyle m+1\leq \displaystyle (\frac{m}{5}+1)(\frac{m}{5}-2)<m+\frac{3}{2}
整理化簡後可得 \displaystyle 75\leq m^2-30m<87.5
\displaystyle m^2-30m=75,76,\cdots ,86,87,利用同餘篩選並檢驗發現沒有整數解
故綜合以上,\displaystyle x=\frac{32}{5},x=\frac{-2}{5}