Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath
發新話題
打印

104六家高中一題

104六家高中一題

https://www.ptt.cc/bbs/Math/M.1435770154.A.084.html
草原上有個柵欄,柵欄所圍範圍是x2+y2=16,欄外有一頭牛,牛被栓在柵欄上的一定點A,繩長6單位,請問牛所能移動的最大面積為?(不考慮繩結誤差,將牛視為點)

AOB=,圓參數式B(4cos4sin)AB弧長4BC=64
BC為圓的切線,OBC=90,所以BCD=
BD=(64)sinCD=(64)cos
得到C(4cos(64)sin4sin+(64)cos)023

準備出門,看有沒有人可以把參數式的面積積出來

104.7.7補充
其他牛吃草問題
http://mathforum.org/dr.math/faq/faq.grazing.html

附件

六家高中.gif (24.4 KB)

2015-7-2 06:45

六家高中.gif

TOP

回復 1# bugmens 的帖子

2304sin+64  cos  d4cos64  sin  2304sind4cos  =9 

所求=92+2162=18+18

TOP

(2015.7.2 11:39 PM 更新)

先謝謝樓下 寸絲老師的說明。我把這題的個人想法改寫得簡潔些:

先考慮一個問題: 區間 [ 0, a ],將之 n 等分,考慮以下各等分點 (a/n,2a/n,...,na/n) 之 "平方的算數平均",當 n ,該值 = a² /3。除了用極限算,從大家熟悉的: 圓錐體積 = (1/3)*(同底同高之圓柱體積),亦可體會出這個事實。

以下借用 bugmens 老師的圖:

要考慮的是第一象限處,x < 4 部分的所求面積。先設想柵欄是個正多邊形,A 是一個頂點。當牛從 (4, 6) 處開始,逆時針拉緊繩子走,掃過的面積為若干個扇形面積和 (扇形半徑依次減少一個邊長)。 現在柵欄改為圓形 (正多邊形的極致),由於圓的曲率各處相等,上述的面積成為
"半徑由 6 (依旋轉角) 等速遞減至 0 的無窮多個小扇形面積和";  又扇形面積 = r²θ /2,我們將連續變化的 r² 以其平均 (6² /3) 代之 (依上文)。而 r 由 6 至 0,總旋轉角 = (3/2) 弧度。

因此,第一象限處,x < 4 部分的所求面積 = Σ r²θ/2 = (6²/3)*(3/2)*(1/2) = 9。

由是,牛所能移動的最大面積 = 18+18π 。

即使繩子再長些,使牛可至第二象限,作法亦同。

[ 本帖最後由 cefepime 於 2015-7-2 11:40 PM 編輯 ]

TOP

回復 3# cefepime 的帖子

可以用變數代換,積分來寫這個過程

x4y0   的部分,可寫成

(xy)=(4cosksin4sin+kcos)0230k64
固定 值的時候,(4cos4sin)x2+y2=42 上的一點,改變 k 的值,由 064 為切線段 (bugmens 原圖)

(xy)=(4sinkcos4cosksin)
(xy)k=(sincos)

J=kcossinksincos=k

x4y0 中,牛所能移動到的區域面積為

Adxdy=023064kdkd=02321(64)2d=9 
( 上行的計算,就是 cefepime 老師的 = Σ(BC)*(BC/2)*ψ = (6²/3)*(1/2)*(3/2) = 9 )

故所有可移動面積為 92+2162=18+18
網頁方程式編輯 imatheq

TOP

謝謝 寸絲老師的說明,假以時日希望能看懂。

我在 3 樓的想法,可簡述為:

把第一象限, x < 4 部分的面積,視為"無窮多個半徑由 6 (依旋轉角)等速遞減至 0 的小扇形的面積和"。又,扇形面積 = r²θ/2,可用 " 平均 r² " = 6²/3 代替 r²,"總旋轉角"代替 θ。這樣思考,計算答案就不難了。

TOP

回復 5# cefepime 的帖子

應該是感謝 cefepime 絕妙的想法才是

如果還記得直角坐標轉極坐標 dxdy=rdrd 的話

而  #4 的地方,我只是利用 k 表示了和 r 垂直的方向而已,

然後就像是極坐標轉換一樣的積分!
網頁方程式編輯 imatheq

TOP

發新話題
最近訪問的版塊