第十二題, 仿瑋大對巴貝奇定理的講解, 不知道可以不可以:
令\(g_1(x)=f(x+d)-f(x)\), 則\(g_1(x)\)為二次,
令\(g_2(x)=g_1(x+d)-g_1(x)\), 則\(g_2(x)\)為一次,
令\(g_3(x)=g_2(x+d)-g_2(x)\), 則\(g_3(x)\)為0次.
故\(g_3(x+d)-g_3(x)=0\).
依序代入\(g_3,g_2,g_1\)定義, 得
$$
\begin{aligned}
0=&g_3(x+d)-g_3(x)\\
=&[g_2(x+2d)-g_2(x+d)]-[g_2(x+d)-g_2(x)]\\
=&g_2(x+2d)-2g_2(x+d)+g_2(x)\\
=&[g_1(x+3d)-g_1(x+2d)]-2[g_1(x+2d)-g_1(x+d)]+[g_1(x+d)-g_1(x)]\\
=&g_1(x+3d)-3g_1(x+2d)+3g_1(x+d)-g_1(x)\\
=&[f(x+4d)-f(x+3d)]-3[f(x+3d)-f(x+2d)]+3[f(x+2d)-f(x+d)]-[f(x+d)-f(x)]\\
=&f(x+4d)-4(x+3d)+6f(x+2d)-4f(x+d)+f(x)
\end{aligned}
$$
[ 本帖最後由 David 於 2014-5-11 08:56 PM 編輯 ]