回復 1# agan325 的帖子
計算第1題
\(\begin{align}
& {{a}^{2}}{{b}^{2}}=4{{a}^{5}}+{{b}^{3}} \\
& {{a}^{2}}\left( {{b}^{2}}-4{{a}^{3}} \right)={{b}^{3}} \\
\end{align}\)
令\(a=md,b=nd,\left( a,b \right)=d\)
\(\begin{align}
& {{m}^{2}}{{d}^{2}}\left( {{n}^{2}}{{d}^{2}}-4{{m}^{3}}{{d}^{3}} \right)={{n}^{3}}{{d}^{3}} \\
& {{m}^{2}}\left( {{n}^{2}}d-4{{m}^{3}}{{d}^{2}} \right)={{n}^{3}} \\
& m=1,a=d \\
& {{n}^{2}}a-4{{a}^{2}}={{n}^{3}} \\
& 4{{a}^{2}}-{{n}^{2}}a+{{n}^{3}}=0 \\
& a=\frac{{{n}^{2}}\pm n\sqrt{{{n}^{2}}-16n}}{8} \\
\end{align}\)
令\({{n}^{2}}-16n={{k}^{2}}\quad ,k\in N\)
\(\begin{align}
& {{\left( n-8 \right)}^{2}}-{{k}^{2}}=64 \\
& \left( n-8+k \right)\left( n-8-k \right)=64 \\
& \left( n-8+k,n-8-k \right)=\left( 32,2 \right),\left( 16,4 \right),\left( 8,8 \right),\left( -2,-32 \right),\left( -4,-16 \right),\left( -8,-8 \right) \\
& \left( n,k \right)=\left( 25,15 \right),\left( 18,6 \right),\left( 16,0 \right),\left( -9,15 \right),\left( -2,6 \right) \\
& \\
& a=\frac{{{n}^{2}}\pm nk}{8}=\frac{n\left( n\pm k \right)}{8} \\
& \left( n,k \right)=\left( 25,15 \right),\left( a,b \right)=\left( 125,3125 \right) \\
& \left( n,k \right)=\left( 18,6 \right),\left( a,b \right)=\left( 54,972 \right),\left( 27,486 \right) \\
& \left( n,k \right)=\left( 16,0 \right),\left( a,b \right)=\left( 32,512 \right) \\
& \left( n,k \right)=\left( -9,15 \right),\left( a,b \right)=\left( 27,-243 \right) \\
& \left( n,k \right)=\left( -2,6 \right),\left( a,b \right)=\left( -1,2 \right),\left( 2,-4 \right) \\
\end{align}\)
共7組解