回復 1# Lapis 的帖子
若 \(f\left(x\right) = ax+b\),(這裡可以看的出來 \(a,b\) 對應到上面題目裡面就是 \(\displaystyle a=\frac{5}{6}, b=-2^{20}\) )
則對於任意兩個相異實數 \(x_1,x_2\) 而言,
\(\displaystyle \frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\frac{\left(ax_1+b\right)-\left(ax_2+b\right)}{x_1-x_2}=\frac{ax_1-ax_2}{x_1-x_2}=\frac{a\left(x_1-x_2\right)}{x_1-x_2}=a\)
另外, \(\displaystyle \frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}\) 就是 兩點 \(\left(x_1,f\left(x_1\right)\right)\) 與 \(\left(x_2,f\left(x_2\right)\right)\) 的 「\(y\) 坐標的差距」除以「\(x\) 坐標的差距」,也就是斜率 \(\displaystyle\frac{\Delta y}{\Delta x}\)。
所以對應回到這道題目的話,若 \(f\left(x\right) = ax+b\),就可以利用 \(\displaystyle \frac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=a\)
可以先把 分母的 \(106-2017\) 變成 \(2017-106\) ,不過當然,兩者會差一個負號,
如此,則可以很快地知道 \(\displaystyle \frac{f\left(2017\right)-f\left(106\right)}{2017-106}\) 就會是「 \(ax+b\) 當中 \(x\) 前面的那個係數」,也就是 \(a\)(斜率)。
所以, 題目要求的 \(\displaystyle \frac{f\left(2017\right)-f\left(106\right)}{106-2017}=-\,\frac{f\left(2017\right)-f\left(106\right)}{2017-106}=-a=-\frac{5}{6}.\)