1.
一數列\(\langle\;a_n\rangle\;\)中,\(a_1=3\),且滿足\(a_{n+1}=4+a_n+\sqrt{1+16a_n}\),求數列一般項\(a_n=\)?
數列\(\langle\;a_n\rangle\;\)滿足\(a_1=1\)、\(\displaystyle a_{n+1}=\frac{1}{16}(1+4a_n+\sqrt{1+24a_n})\),求此數列的一般項\(a_n\)。
(109中科實中國中部,連結解答
https://math.pro/db/viewthread.php?tid=3347&page=1#pid21480)
9.
求\(\displaystyle \lim_{n\to \infty}\sum_{k=1}^n \frac{k}{n^2}\sqrt{1-\left(\frac{k}{n}\right)^2}=\)?
二、計算題
3.
已知\(\triangle ABC\)中,\(\overline{BC}=a\),\(\overline{AC}=b\),\(\overline{AB}=c\),\(\triangle ABC\)的內切圓分別交\(\overline{AB},\overline{BC},\overline{AC}\)於\(D,E,F\)三點,若令\(\overline{AD}=x,\overline{BE}=y,\overline{CF}=z\)
(1)試證明:\(\displaystyle x=\frac{b+c-a}{2},y=\frac{a+c-b}{2},z=\frac{a+b-c}{2}\)
(2)證明:\(abc\ge (b+c-a)(a+c-b)(a+b-c)\).並說明等號成立時,\(\triangle ABC\)為正三角形。