回覆 2# mathca 的帖子
填充第10題:
設 \(\overline{AD} = a, \overline{DP}=r, \angle ADP = \theta, D(0,0), C(a,0), A(0,a)\),
得 \(P\left(r\sin\theta, r\cos\theta\right)\),
且依題意 \(\overline{BP}=\overline{DP}\) 與 \(\overline{DP}//\overline{BQ}\),
得 \(Q\left(a-r\sin\theta, a-r\cos\theta\right)\),
利用 \(\overline{PQ} = r\), 得 \(\sqrt{\left(a-2r\sin\theta\right)^2 +\left(a-2r\cos\theta\right)^2} = r\)
\(\Rightarrow 2a^2-4ar\left(\sin\theta+\cos\theta\right) + 4r^2 = r^2\)
\(\Rightarrow 2a^2 -4\sqrt{2} ar\sin(\theta+45^\circ) + 3r^2 = 0\)
\(\displaystyle \Rightarrow \sin\left(\theta+45^\circ\right) = \frac{2a^2+3r^2}{4\sqrt{2}ar} \geq \frac{2\sqrt{2a^2\cdot 3r^2}}{4\sqrt{2}ar} = \frac{\sqrt{3}}{2}=\sin60^\circ\)。
可知當 \(2a^2 = 3r^2\) 時, \(\theta\) 有最小值為 \(15\) 度。